Abstract

Electrical-assisted stress relaxation (EASR) experiments were conducted on Ti55 alloy sheets under varying electrical parameters. The results show that the stress relaxation rate increases with higher effective current density but with current frequency decreases. To capture this behavior, a stress relaxation model incorporating electrical parameters was developed based on the Arrhenius equation, showing a strong correlation with experimental data. Microstructural evolution during EASR was analyzed using electron backscatter diffraction (EBSD). At an effective current density of 11 A/mm2 and a frequency of 50 Hz, grain rotation and grain boundary sliding were the primary mechanisms. As the current density increased to 12.5 A/mm2, dislocation motion became dominant, contributing to an increased stress relaxation rate and limit, as indicated by local misorientation changes. At a current density of 13.5 A/mm2 and a stable temperature of 834.8 °C, dynamic recrystallization (DRX) emerged as the main mechanism. Analysis of grain locations and subgrain boundaries revealed that DRX occurs through grain boundary protrusion and subgrain movement. Finally, phase transformation was identified as a crucial mechanism at an effective current density of 19.5 A/mm2, inducing temperatures above the phase transition point of Ti55 alloy. This study provides a comprehensive understanding of how electrical parameters influence stress relaxation mechanisms in Ti55 alloy, offering key insights for optimizing high-temperature forming processes in titanium alloys.

References

1.
Wang
,
F.
,
Bai
,
B. L.
, and
Zhu
,
M. S.
,
2014
, “
Research and Development of High Temperature Titanium Alloys Used at 550 °C
,”
Titanium Ind. Prog.
,
31
(
1
), pp.
6
11
.
2.
Xiao
,
J. J.
,
Li
,
D. S.
, and
Li
,
X. Q.
,
2015
, “
Modeling and Simulation for the Stress Relaxation Behavior of Ti-6Al-4V at Medium Temperature
,”
Rare Met. Mater. Eng.
,
44
(
5
), pp.
1046
1051
.
3.
Liu
,
P.
,
Zong
,
Y. Y.
,
Shan
,
D. B.
, and
Guo
,
B.
,
2015
, “
Relationship Between Constant-Load Creep, Decreasing-Load Creep and Stress Relaxation of Titanium Alloy
,”
Mater. Sci. Eng. A
,
638
, pp.
106
113
.
4.
Cui
,
X. X.
,
Wu
,
X. D.
,
Wan
,
M.
,
Ma
,
B. L.
, and
Zhang
,
Y. L.
,
2019
, “
A Novel Constitutive Model for Stress Relaxation of Ti-6Al-4V Alloy Sheet
,”
Int. J. Mech. Sci.
,
161–162
, p.
105034
.
5.
Zong
,
Y. Y.
,
Liu
,
P.
,
Guo
,
B.
, and
Shan
,
D. B.
,
2015
, “
Investigation on High Temperature Short-Term Creep and Stress Relaxation of Titanium Alloy
,”
Mater. Sci. Eng. A
,
620
, pp.
172
180
.
6.
Luo
,
J. F.
,
Xiong
,
W.
,
Li
,
X. F.
, and
Chen
,
J.
,
2019
, “
Investigation on High-Temperature Stress Relaxation Behavior of Ti-6Al-4V Sheet
,”
Mater. Sci. Eng. A
,
743
, pp.
755
763
.
7.
Peng
,
H. L.
,
Li
,
X. F.
,
Chen
,
X.
,
Jiang
,
J.
,
Luo
,
J. F.
,
Xiong
,
W.
, and
Chen
,
J.
,
2020
, “
Effect of Grain Size on High-Temperature Stress Relaxation Behavior of Fine-Grained TC4 Titanium Alloy
,”
Trans. Nonferrous Met. Soc. China
,
30
(
3
), pp.
668
677
.
8.
Liu
,
Y.
,
Zhu
,
J. C.
, and
Yin
,
Z.
,
2002
, “
Stress Relaxation Behavior and Microstructure Observation in TC4 Alloy
,”
Chin. J. Rare Met.
,
6
, pp.
509
512
.
9.
Yang
,
Y. L.
,
Zhan
,
L. H.
,
Shen
,
R. L.
,
Liu
,
J.
,
Li
,
X. C.
,
Huang
,
M. H.
,
He
,
D. Q.
,
Chang
,
Z. L.
,
Ma
,
Y. L.
, and
Wan
,
L.
,
2018
, “
Investigation on the Creep-Age Forming of an Integrally-Stiffened AA2219 Alloy Plate: Experiment and Modeling
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2015
2025
.
10.
Ho
,
K. C.
,
Lin
,
J.
, and
Dean
,
T. A.
,
2004
, “
Constitutive Modelling of Primary Creep for Age Forming an Aluminium Alloy
,”
J. Mater. Process. Technol.
,
38
(
1
), pp.
122
127
.
11.
Tang
,
G. Y.
,
Zhang
,
J.
,
Yan
,
Y. J.
,
Zhou
,
H. H.
, and
Fang
,
W.
,
2003
, “
The Engineering Application of the Electroplastic Effect in the Cold-Drawing of Stainless Steel Wire
,”
J. Mater. Process. Technol.
,
137
(
1–3
), pp.
96
99
.
12.
Conrad
,
H.
,
2000
, “
Effects of Electric Current on Solid State Phase Transformations in Metals
,”
Mater. Sci. Eng. A
,
287
(
2
), pp.
227
237
.
13.
Bao
,
J. X.
,
Ding
,
C. G.
,
Xu
,
J.
,
Yang
,
Z. Q.
,
Shan
,
D. B.
, and
Guo
,
B.
,
2024
, “
Characterization of Stress Drop and Strain Localization for Titanium Alloy Subjected to Electrically-Assisted Tension
,”
J. Mater. Res. Technol.
,
28
, pp.
4600
4614
.
14.
Xu
,
F.
,
Xiao
,
Y.
,
Hu
,
X.
,
Dong
,
B.
,
Liu
,
W.
, and
Li
,
Y.
,
2016
, “
In Situ Investigation of Al-Ti Mixed Metal System Microwave Sintering by Synchrotron Radiation Computed Tomography
,”
J. Instrum.
,
11
(
2
), p.
C02074
.
15.
Zhou
,
Y.
,
Chen
,
G. Q.
,
Fu
,
X. S.
, and
Zhou
,
W. L.
,
2014
, “
Effect of Electropulsing on Deformation Behavior of Ti-6Al-4V Alloy During Cold Drawing
,”
Trans. Nonferrous Met. Soc. China
,
24
(
4
), pp.
1012
1021
.
16.
Tang
,
Z. J.
,
Du
,
H.
,
Lang
,
L. H.
,
Jiang
,
S. S.
,
Chen
,
J.
, and
Zhang
,
J. T.
,
2018
, “
Experimental Investigation Into the Electropulsing Assisted Punching Process of 2024T4 Aluminum Alloy Sheet
,”
J. Mater. Process. Technol.
,
253
, pp.
86
98
.
17.
Tang
,
Z. J.
,
Du
,
H.
,
Tao
,
K. M.
,
Chen
,
J.
, and
Zhang
,
J. T.
,
2019
, “
Effect of Electropulsing on Edge Stretchability and Corrosion Resistance Near the Punched Edge of a 2024T4 Aluminum Alloy Sheet
,”
J. Mater. Process. Technol.
,
263
, pp.
343
355
.
18.
Zhao
,
Y. X.
,
Peng
,
L. F.
, and
Lai
,
X. M.
,
2018
, “
Influence of the Electric Pulse on Springback During Stretch U-Bending of Ti6Al4V Titanium Alloy Sheets
,”
J. Mater. Process. Technol.
,
261
, pp.
12
23
.
19.
Ao
,
D. W.
,
Chu
,
X. G.
,
Yang
,
Y.
,
Lin
,
S. X.
, and
Gao
,
J.
,
2018
, “
Effect of Electropulsing on Springback During V-Bending of Ti-6Al-4V Titanium Alloy Sheet
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3197
3207
.
20.
Xie
,
H. Y.
,
Dong
,
X. H.
,
Peng
,
F.
,
Wang
,
Q.
,
Liu
,
K.
,
Wang
,
X. B.
, and
Chen
,
F.
,
2016
, “
Investigation on the Electrically-Assisted Stress Relaxation of AZ31B Magnesium Alloy Sheet
,”
J. Mater. Process. Technol.
,
227
, pp.
88
95
.
21.
Xie
,
H. Y.
,
Dong
,
X. H.
,
Wang
,
Q.
,
Peng
,
F.
,
Liu
,
K.
,
Wang
,
X. B.
, and
Chen
,
F.
,
2016
, “
Investigation on Transient Electrically-Assisted Stress Relaxation of QP980 Advanced High Strength Steel
,”
Mech. Mater.
,
93
, pp.
238
245
.
22.
Conrad
,
H.
,
2000
, “
Electroplasticity in Metals and Ceramics
,”
Mater. Sci. Eng. A
,
287
(
2
), pp.
276
287
.
23.
Conrad
,
H.
,
1998
, “
Some Effects of an Electric Field on the Plastic Deformation of Metals and Ceramics
,”
Mater. Res. Innov.
,
2
(
1
), pp.
1
8
.
24.
Kim
,
M. J.
,
Yoon
,
S.
,
Park
,
S.
,
Jeong
,
H. J.
,
Park
,
J. W.
,
Kim
,
K.
,
Jo
,
J.
, et al
,
2020
, “
Elucidating the Origin of Electroplasticity in Metallic Materials
,”
Appl. Mater. Today
,
21
, p.
100874
.
25.
Zhao
,
S. T.
,
Zhang
,
R. P.
,
Chong
,
Y.
,
Li
,
X. Q.
,
Abu-Odeh
,
A.
,
Rothchild
,
E.
,
Chrzan
,
D. C.
,
Asta
,
M.
,
Moris
,
J. W.
, Jr.
and
Minor
,
A. M.
,
2021
, “
Defect Reconfiguration in a Ti–Al Alloy via Electroplasticity
,”
Nat. Mater.
,
20
(
4
), pp.
468
472
.
26.
Ruszkiewicz
,
B. J.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2018
, “
Investigation of Heterogeneous Joule Heating as the Explanation for the Transient Electroplastic Stress Drop in Pulsed Tension of 7075-T6 Aluminum
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091014
.
27.
Li
,
X.
,
Zhu
,
Q.
,
Hong
,
Y. R.
,
Zheng
,
H.
,
Wang
,
J.
,
Wang
,
J. W.
, and
Zhang
,
Z.
,
2022
, “
Revealing the Pulse-Induced Electroplasticity by Decoupling Electron Wind Force
,”
Nat. Commun.
,
13
(
1
), p.
6503
.
28.
Liu
,
Y. Z.
,
Meng
,
B.
,
Du
,
M.
, and
Wan
,
M.
,
2022
, “
Electroplastic Effect and Microstructural Mechanism in Electrically Assisted Deformation of Nickel-Based Superalloys
,”
Mater. Sci. Eng. A
,
840
, p.
142975
.
29.
Conrad
,
H.
,
2002
, “
Thermally Activated Plastic Flow of Metals and Ceramics With an Electric Field or Current
,”
Mater. Sci. Eng. A
,
322
(
1–2
), pp.
100
107
.
30.
Tang
,
Z. J.
,
Ai
,
Y. C.
, and
Xu
,
A. J.
,
2024
, “
Investigation Into the Local Continuous Heating Calibration Process of a 304 Stainless Steel Pipe by Electrically
,”
Trans. Can. Soc. Mech. Eng.
,
48
(
1
), pp.
68
74
.
31.
Zhao
,
Y. C.
,
Wan
,
M.
,
Meng
,
B.
,
Xu
,
J.
, and
Shan
,
D. B.
,
2019
, “
Pulsed Current Assisted Forming of Ultrathin Superalloy Sheet: Experimentation and Modelling
,”
Mater. Sci. Eng. A
,
767
, p.
138412
.
32.
Xu
,
Z. T.
,
Jiang
,
T. H.
,
Huang
,
J. H.
,
Peng
,
L. F.
,
Lai
,
X. M.
, and
Fu
,
M. W.
,
2022
, “
Electroplasticity in Electrically-Assisted Forming: Process Phenomena, Performances and Modelling
,”
Int. J. Mach. Tools Manuf.
,
175
, p.
103871
.
33.
Liu
,
Y. Z.
,
Wan
,
M.
, and
Meng
,
B.
,
2021
, “
Multiscale Modeling of Coupling Mechanisms in Electrically Assisted Deformation of Ultrathin Sheets: An Example on a Nickel-Based Superalloy
,”
Int. J. Mach. Tools Manuf.
,
162
, p.
103689
.
34.
Yin
,
F.
,
Ma
,
S. T.
,
Hu
,
S.
,
Liu
,
Y. X.
,
Hua
,
L.
, and
Cheng
,
G. J.
,
2023
, “
Understanding the Microstructure Evolution and Mechanical Behavior of Titanium Alloy During Electrically Assisted Plastic Deformation Process
,”
Mater. Sci. Eng. A
,
869
, p.
144815
.
35.
Tang
,
Z. J.
,
Gao
,
Y. J.
,
Guo
,
S. H.
, and
Pei
,
Y. T.
,
2025
, “
Investigation Into Electrically-Assisted Rolling of Superalloy Array Microgroove Structure
,”
Mater. Manuf. Processes
,
40
(
9
), p.
265
.
36.
Zhu
,
R. F.
,
Jiang
,
Y. B.
,
Guan
,
L.
,
Li
,
H. L.
, and
Tang
,
G. Y.
,
2015
, “
Difference in Recrystallization Between Electropulsing-Treated and Furnace-Treated NiTi Alloy
,”
J. Alloys Compd.
,
658
, pp.
548
554
.
37.
Liu
,
Y.
, and
Liu
,
R.
,
2008
, “
Stress Relaxation Behavior and Its Mechanism of BT14 Alloy With Equiaxed Grain
,”
Trans. Mater. Heat Treat.
,
29
(
3
), pp.
131
133
. DOI :10.13289/j.issn.1009-6264.2008.03.023
38.
Tang
,
Z. J.
,
Chen
,
J.
,
Dang
,
K. X.
,
Liu
,
G.
, and
Tao
,
K. M.
,
2020
, “
Experimental Investigation Into the Electropulsing Assisted Pulsating Gas Forming of CP-Ti Tubes
,”
J. Mater. Process. Technol.
,
278
, p.
116492
.
39.
Wang
,
Y.
,
Yang
,
W. B.
,
Yang
,
D. D.
,
Liu
,
T. Y.
,
Wang
,
B.
,
Ye
,
F. T.
, and
Li
,
X. F.
,
2023
, “
Test Study on Pure Electroplastic Effect of Ti-55 High Temperature Titanium Alloy
,”
J. Plast. Eng.
,
30
(
6
), pp.
207
213
.
40.
Liang
,
C. L.
, and
Lin
,
K. L.
,
2018
, “
The Microstructure and Property Variations of Metals Induced by Electric Current Treatment: A Review
,”
Mater. Char.
,
145
, pp.
545
555
.
41.
Sinha
,
N. K.
, and
Sinha
,
S.
,
2005
, “
Stress Relaxation at High Temperatures and the Role of Delayed Elasticity
,”
Mater. Sci. Eng. A
,
393
(
1–2
), pp.
179
190
.
42.
Kim
,
M. J.
,
Bui-Thi
,
T. A.
,
Kang
,
S. G.
,
Hong
,
S. T.
, and
Han
,
H. N.
,
2024
, “
Electric Current-Induced Phenomena in Metallic Materials
,”
Curr. Opin. Solid State Mater. Sci.
,
32
, p.
101190
.
43.
Liu
,
Z. G.
,
Li
,
P. J.
,
Xiong
,
L. T.
,
Liu
,
T. Y.
, and
He
,
L. J.
,
2017
, “
High-Temperature Tensile Deformation Behavior and Microstructure Evolution of Ti55 Titanium Alloy
,”
Mater. Sci. Eng. A
,
680
, pp.
259
269
.
44.
Rios
,
P. R.
,
Siciliano
,
F.
,
Sandim
,
H.
,
Plaut
,
R. L.
, and
Padilha
,
A. F.
,
2017
, “
Nucleation and Growth During Recrystallization
,”
Mater. Res.
,
8
(
3
), pp.
225
238
.
45.
Wang
,
J. W.
,
Chen
,
Y. B.
,
Zhu
,
Q.
,
Hong
,
Z.
, and
Zhang
,
Z.
,
2022
, “
Grain Boundary Dominated Plasticity in Metallic Materials
,”
Acta Metall. Sinca
,
58
(
6
), pp.
726
745
.
46.
Chun
,
Y. B.
,
Battaini
,
M.
,
Davies
,
C. H. J.
, and
Hwang
,
S. K.
,
2010
, “
Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation With Active Slip Modes
,”
Metall. Mater. Trans. A
,
41
(
13
), pp.
3473
3487
.
47.
Wang
,
K.
,
Wu
,
M. Y.
,
Yan
,
Z. B.
,
Li
,
D. R.
,
Xin
,
R. L.
, and
Liu
,
Q.
,
2018
, “
Microstructure Evolution and Static Recrystallization During Hot Rolling and Annealing of an Equiaxed-Structure TC21 Titanium Alloy
,”
J. Alloys Compd.
,
752
, pp.
14
22
.
48.
Picu
,
R. C.
, and
Majorell
,
A.
,
2002
, “
Mechanical Behavior of Ti–6Al–4V at High and Moderate Temperatures—Part II: Constitutive Modeling
,”
Mater. Sci. Eng. A
,
326
(
2
), pp.
306
316
.
49.
Sprecher
,
A. F.
,
Mannan
,
S. L.
, and
Conrad
,
H.
,
1986
, “
Overview No. 49: On the Mechanisms for the Electroplastic Effect in Metals
,”
Acta Metall.
,
34
(
7
), pp.
1145
1162
.
50.
Liu
,
W.
,
Liang
,
K. M.
,
Zheng
,
Y. K.
, and
Cui
,
J. Z.
,
1998
, “
Study of the Diffusion of Al–Li Alloys Subjected to an Electric Field
,”
J. Mater. Sci.
,
33
(
4
), pp.
1043
1047
.
51.
Jiang
,
Y. B.
,
Tang
,
G. Y.
,
Shek
,
C. H.
,
Xie
,
J. X.
,
Xu
,
Z. H.
, and
Zhang
,
Z. H.
,
2012
, “
Mechanism of Electropulsing Induced Recrystallization in a Cold-Rolled Mg–9Al–1Zn Alloy
,”
J. Alloys Compd.
,
536
, pp.
94
105
.
52.
Huang
,
K.
,
Cayron
,
C.
, and
Logé
,
R. E.
,
2017
, “
The Surprising Influence of Continuous Alternating Electric Current on Recrystallization Behaviour of a Cold-Rolled Aluminium Alloy
,”
Mater. Char.
,
129
, pp.
121
126
.
53.
Jiang
,
T. H.
,
Peng
,
L. F.
,
Yi
,
P. Y.
, and
Lai
,
X. M.
,
2016
, “
Flow Behavior and Plasticity of Ti–6Al–4V Under Different Electrically Assisted Treatments
,”
Mater. Res. Express
,
3
(
12
), p.
126505
.
You do not currently have access to this content.