Abstract

The mechanical heterogeneity in local areas of dissimilar metal welded joints and the micro-area mechanical state at the crack tip are key factors in determining Environment-Assisted Cracking (EAC). Traditional methods for acquiring material mechanical properties often result in destructive damage to specimens, while conventional “sandwich” models exhibit abrupt changes in interfacial mechanical properties and a lack of research into the mechanical field at the tip of the stationary or growing crack. In light of these challenges, this study, based on the analysis of microstructures in localized regions of the welded joint and the acquisition of material mechanical properties through indentation tests, developed a user-defined material subroutine (UMAT) to characterize the mechanical properties of non-uniform local areas within the welded joint. Additionally, it investigated the mechanical field at the tip of the stationary—growing crack using an integral method and a de-bond technique. The results indicate that non-destructive indentation tests can accurately acquire the material mechanical properties of local areas in the welded joint. Notably, significant changes in mechanical properties typically occur in the material interface regions, making them vulnerable points for potential failure. Furthermore, under the same load, mechanical heterogeneity significantly influences the distribution of the mechanical field at the crack tip. Crack propagation induces alterations in crack tip stresses, resulting in noticeable residual stresses and strains along the propagation path.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Wang
,
H. T.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2013
, “
Fracture Mechanism of a Dissimilar Metal Welded Joint in Nuclear Power Plant
,”
Eng. Failure Anal.
,
28
, pp.
134
148
.
2.
Xue
,
H.
,
Ogawa
,
K.
, and
Shoji
,
T.
,
2009
, “
Effect of Welded Mechanical Heterogeneity on Local Stress and Strain Ahead of Stationary and Growing Crack Tips
,”
Nucl. Eng. Des.
,
239
(
4
), pp.
628
640
.
3.
Andresen
,
P. L.
,
2019
, “
A Brief History of Environmental Cracking in Hot Water
,”
Corrosion
,
75
(
3
), pp.
240
253
.
4.
Chopra
,
O. K.
,
Chung
,
H. M.
,
Kassner
,
T. F.
,
Park
,
J. H.
,
Shack
,
W. J.
,
Zhang
,
J.
,
Brust
,
F. W.
, and
Dong
,
P.
,
1999
, “
Current Research on Environmentally Assisted Cracking in Light Water Reactor Environments
,”
Nucl. Eng. Des.
,
194
(
2–3
), pp.
205
223
.
5.
Wang
,
Z.
,
Xue
,
H.
,
Wang
,
S.
, and
Zhang
,
Y.
,
2023
, “
A Multi-Method Coupled Approach to Simulate Crack Growth Path and Stress-Strain Field at the Tip of the Growing Crack in the Dissimilar Metal Welded Joint
,”
Int. J. Press. Vess. Pip.
,
206
, p.
105046
.
6.
Ming
,
H.
,
Zhu
,
R.
,
Zhang
,
Z.
,
Wang
,
J.
,
Han
,
E. H.
,
Ke
,
W.
, and
Su
,
M.
,
2016
, “
Microstructure, Local Mechanical Properties and Stress Corrosion Cracking Susceptibility of an SA508-52M-316LN Safe-end Dissimilar Metal Weld Joint by GTAW
,”
Mater. Sci. Eng.: A
,
669
, pp.
279
290
.
7.
Hou
,
J.
,
Shoji
,
T.
,
Lu
,
Z. P.
,
Peng
,
Q. J.
,
Wang
,
J. Q.
,
Han
,
E. H.
, and
Ke
,
W.
,
2010
, “
Residual Strain Measurement and Grain Boundary Characterization in the Heat-Affected Zone of a Weld Joint Between Alloy 690TT and Alloy 52
,”
J. Nucl. Mater.
,
397
(
1–3
), pp.
109
115
.
8.
Sisan
,
A. M.
, and
Motarjemi
,
A.
,
2009
, “
The Effect of Strength Mismatch and Residual Stress in ECA of Girth Welds With Internal Circumferential Cracks
,”
ASME Press. Vess. Pip. Conf.
,
43697
, pp.
1807
1813
.
9.
Xue
,
H.
,
He
,
J.
,
Jia
,
W.
,
Zhang
,
J.
,
Wang
,
S.
,
Zhang
,
S.
,
Yang
,
H.
, and
Wang
,
Z.
,
2020
, “
An Approach for Obtaining Mechanical Property of Austenitic Stainless Steel by Using Continuous Indentation Test Analysis
,”
Structures
,
28
, pp.
2752
2759
.
10.
Turcot
,
G.
,
Paquet
,
D.
,
Lévesque
,
M.
, and
Turenne
,
S.
,
2022
, “
A Novel Inverse Methodology for the Extraction of Bulk Elasto-Plastic Tensile Properties of Metals Using Spherical Instrumented Indentation
,”
Int. J. Solids Struct.
,
236
, p.
111317
.
11.
Cahoon
,
J. R.
,
Broughton
,
W. H.
, and
Kutzak
,
A. R.
,
1971
, “
The Determination of Yield Strength From Hardness Measurements
,”
Metall. Trans.
,
2
(
7
), pp.
1979
1983
.
12.
Wu
,
S.
,
Xu
,
T.
,
Song
,
M.
, and
Guan
,
K.
,
2016
, “
Mechanical Properties Characterisation of Welded Joint of Austenitic Stainless Steel Using Instrumented Indentation Technique
,”
Mater. High Temp.
,
33
(
3
), pp.
270
275
.
13.
Moharrami
,
R.
, and
Sanayei
,
M.
,
2020
, “
Developing a Method in Measuring Residual Stress on Steel Alloys by Instrumented Indentation Technique
,”
Measurement
,
158
, p.
107718
.
14.
Kok
,
Y.
,
Tan
,
X. P.
,
Wang
,
P.
,
Nai
,
M. L. S.
,
Loh
,
N. H.
,
Liu
,
E.
, and
Tor
,
S. B.
,
2018
, “
Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review
,”
Mater. Des.
,
139
, pp.
565
586
.
15.
Xue
,
H.
,
Wang
,
Z.
,
Wang
,
S.
,
He
,
J.
, and
Yang
,
H.
,
2021
, “
Characterization of Mechanical Heterogeneity in Dissimilar Metal Welded Joints
,”
Materials
,
14
(
15
), p.
4145
.
16.
Fan
,
K.
,
Wang
,
G. Z.
,
Yang
,
J.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2015
, “
Numerical Analysis of Constraint and Strength Mismatch Effects on Local Fracture Resistance of Bimetallic Joints
,”
Appl. Mech. Mater.
,
750
, pp.
24
31
.
17.
Lin
,
H.
,
Yang
,
H.
,
Wang
,
Y.
,
Zhao
,
Y.
, and
Cao
,
R.
,
2019
, “
Determination of the Stress Field and Crack Initiation Angle of an Open Flaw tip Under Uniaxial Compression
,”
Theor. Appl. Fract. Mech.
,
104
, p.
102358
.
18.
Xue
,
H.
,
Jia
,
Y. L.
,
Lu
,
J. Z.
,
Wang
,
S.
,
Wang
,
Z.
, and
Wang
,
S.
,
2022
, “
An Approach for Obtaining Surface Residual Stress Based on Indentation Test and Strain Measurement
,”
Mater. Test.
,
64
(
2
), pp.
220
227
.
19.
Ma
,
D.
,
Zhang
,
T.
, and
Ong
,
C. W.
,
2006
, “
Revelation of a Functional Dependence of the Sum of Two Uniaxial Strengths/Hardness on Elastic Work/Total Work of Indentation
,”
J. Mater. Res.
,
21
(
4
), pp.
895
903
.
20.
Xue
,
H.
,
He
,
J.
,
Zhang
,
J.
, and
Xue
,
Y.
,
2021
, “
Approach for Obtaining Material Mechanical Properties in Local Region of Structure Based on Accurate Analysis of Micro-Indentation Test
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
12
.
21.
Lu
,
D.
,
Du
,
X.
,
Wang
,
G.
,
Zhou
,
A.
, and
Li
,
A.
,
2016
, “
A Three-Dimensional Elastoplastic Constitutive Model for Concrete
,”
Comput. Struct.
,
163
, pp.
41
55
.
22.
Wang
,
S.
,
Zhang
,
H.
,
Ju
,
Z.
,
Li
,
B.
,
Chen
,
F.
, and
Han
,
F.
,
2023
, “
Effect of Inhomogeneous Mechanical Properties on the Stress–Strain Field at the Crack Tip and Crack Growth Direction in Dissimilar Metal Welded Joints
,”
Sci. Technol. Nucl. Install.
,
2023
, p.
16
.
23.
Scott
,
P. M.
, and
Combrade
,
P.
,
2019
, “
General Corrosion and Stress Corrosion Cracking of Alloy 600 in Light Water Reactor Primary Coolants
,”
J. Nucl. Mater.
,
524
, pp.
340
375
.
You do not currently have access to this content.