Abstract

The creep behavior of Inconel 740H weldment at the temperature of 760 °C is investigated experimentally and analytically using the deformation-mechanism-based true stress (DMTS) model. The Inconel 740H weldment specimens are prepared with the gas tungsten arc welding technique. Creep testing is performed on the Inconel 740H weldment specimens under a range of stress levels from 190 MPa to 447 MPa at the temperature of 760 °C. The DMTS model is employed to analyze the creep curves and creep rates. The model parameters for Inconel 740H weldment are determined from the analyses of the creep testing data in combination with that from the previous studies of similar materials based on the same creep mechanisms that involve grain boundary sliding and intragranular dislocation climb-plus-glide with dislocation multiplication. The creep life predictions of the DMTS model for Inconel 740H weldment agree very well with creep rupture test data within a temperature range of 700–800 °C. The fractured surfaces and longitudinal sections of creep-tested Inconel 740H weldment specimens are examined using scanning electron microscopy, which corroborates the DMTS model inference that the creep failure of Inconel 740H weldment is in a mode of predominantly intergranular fracture. The present study suggests that grain boundary sliding is the most significant controlling factor for the creep failure of Inconel 740H weldment.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Rösler
,
J.
,
Götting
,
M.
,
Genovese
,
D. D.
,
Böttger
,
B.
,
Kopp
,
R.
,
Wolske
,
M.
,
Schubert
,
F.
, et al
,
2003
, “
Wrought Ni-Base Superalloys for Steam Turbine Applications Beyond 700 °C
,”
Adv. Eng. Mater.
,
5
(
7
), pp.
469
483
.
2.
Yuan
,
Y.
,
Zhong
,
Z. H.
,
Yu
,
Z. S.
,
Yin
,
H. F.
,
Dang
,
Y. Y.
,
Zhao
,
X. B.
,
Yang
,
Z.
,
Lu
,
J. T.
,
Yan
,
J. B.
, and
Gu
,
Y.
,
2015
, “
Tensile and Creep Deformation of a Newly Developed Ni-Fe-Based Superalloy for 700 °C Advanced Ultra-Supercritical Boiler Applications
,”
Met. Mater. Int.
,
21
(
4
), pp.
659
665
.
3.
Ma
,
Y. W.
,
Lee
,
K. W.
,
Kong
,
B. O.
,
Hong
,
H. U.
, and
Lee
,
Y. S.
,
2021
, “
Evaluation of Weld Joint Strength Reduction Factor Due to Creep in Alloy 740H to P92 Dissimilar Metal Weld Joint
,”
Met. Mater. Int.
,
27
(
11
), pp.
4408
4417
.
4.
Shin
,
K. Y.
,
Kim
,
J. H.
,
Terner
,
M.
,
Kong
,
B. O.
, and
Hong
,
H. U.
,
2019
, “
Effects of Heat Treatment on the Microstructure Evolution and the High-Temperature Tensile Properties of Haynes 282 Superalloy
,”
Mater. Sci. Eng. A
,
751
, pp.
311
322
.
5.
Kim
,
D. M.
,
Kim
,
C.
,
Yang
,
C. H.
,
Park
,
J. U.
,
Jeong
,
H. W.
,
Yim
,
K. H.
, and
Hong
,
H. U.
,
2023
, “
Heat Treatment Design of Inconel 740H Superalloy for Microstructure Stability and Enhanced Creep Properties
,”
J. Alloys Compd.
,
946
, p.
169341
.
6.
Render
,
M.
,
Santella
,
M. L.
,
Chen
,
X.
,
Tortorelli
,
P. F.
, and
Cedro III
,
V.
,
2021
, “
Long-Term Creep-Rupture Behavior of Alloy Inconel 740/740H
,”
Metall. Mater. Trans. A
,
52
(
6
), pp.
2601
2612
.
7.
American Society of Mechanical Engineers (ASME)
,
2011
, “
Case 2702 Seamless Ni-25Cr- 20Co Material Section 1, Cases of the ASME Boiler and Pressure Vessel Code
,” BVP-Supp. 7.
8.
Debarbadillo
,
J. J.
,
2017
, “14-INCONEL Alloy 740H,”
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants
,
A.
Di Gianfrancesco
, ed.,
Woodhead Publishing
,
Cambridge, UK
, pp.
469
510
.
9.
Zhao
,
S.
,
Xie
,
X.
,
Smith
,
G. D.
, and
Patel
,
S. J.
,
2006
, “
Research and Improvement on Structure Stability and Corrosion Resistance of Nickel-Base Superalloy INCONEL Alloy 740
,”
Mater. Des.
,
27
(
10
), pp.
1120
1127
.
10.
Shingledecker
,
J. P.
, and
Pharr
,
G. M.
,
2012
, “
The Role of Eta Phase Formation on the Creep Strength and Ductility of INCONEL Alloy 740 at 1023 K (750 °C)
,”
Metall. Mater. Trans. A
,
43
(
6
), pp.
1902
1910
.
11.
Bechetti
,
D. H.
,
Dupont
,
J. N.
,
de Barbadillo
,
J. J.
,
Baker
,
B. A.
, and
Watanabe
,
M.
,
2015
, “
Microstructural Evolution of INCONEL Alloy 740H Fusion Welds During Creep
,”
Metall. Mater. Trans. A
,
46
(
2
), pp.
739
755
.
12.
Zielinski
,
A.
,
Sroka
,
M.
, and
Dudziak
,
T.
,
2018
, “
Microstructure and Mechanical Properties of Inconel 740H After Long-Term Service
,”
Materials
,
11
(
2013
), pp.
1
13
.
13.
Shingledecker
,
J. P.
,
Evans
,
N. D.
, and
Pharr
,
G. M.
,
2013
, “
Influences of Composition and Grain Size on Creep-Rupture Behavior of Inconel Alloy 740
,”
Mater. Sci. Eng. A
,
578
, pp.
277
286
.
14.
Tortorelli
,
P. F.
,
Unocic
,
K. A.
,
Wang
,
H.
,
Santella
,
M. L.
, and
Shingledecker
,
J
.,
2014
, “
Microstructural Changes in Inconel 740 After Long-Term Aging in the Presence and Absence of Stress
,”
Proceedings of the Seventh International Conference on Advances in Materials Technology for Fossil Power Plants
,”
Hawaii, HI
,
Oct. 22–25
, pp.
131
142
.
15.
Tortorelli
,
P. F.
,
Wang
,
H.
,
Unocic
,
K. A.
,
Santella
,
M. L.
,
Shingledecker
,
J. P.
, and
Cedro III
,
V.
,
2014
,
ASME Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries
,
Seattle, WA
,
Apr. 3–5
, pp.
29
36
.
16.
Special Metals Corporation
,
2023
, “INCONEL® ALLOY 740H® A Superalloy Specifically Designed for Advanced Ultra Supercritical Power Generation, Special Metals Corporation Technical Bulletin.”
17.
Wu
,
X. J.
,
Williams
,
S.
, and
Gong
,
D.
,
2012
, “
A True-Stress Creep Model Based on Deformation Mechanisms for Polycrystalline Materials
,”
J. Mater. Eng. Perform.
,
21
(
11
), pp.
2255
2262
.
18.
Ding
,
Y. P.
,
Wu
,
X. J.
,
Liu
,
R.
,
Zhang
,
X. Z.
, and
Khelfaoui
,
F.
,
2023
, “
Creep Performance Characterization for Haynes 282 Using the Deformation-Mechanism-Based True Stress Model
,”
Therm. Sci. Eng. Prog.
,
37
, pp.
101603
.
19.
Dyson
,
B. F.
, and
Gibbons
,
T. B.
,
1987
, “
Tertiary Creep in Nickel-Base Superalloys: Analysis of Experimental Data and Theoretical Synthesis
,”
Acta Metall.
,
35
(
9
), pp.
2355
2369
.
20.
Wu
,
X. J.
, and
Koul
,
A. K.
,
1995
, “
Grain Boundary Sliding in the Presence of Grain Boundary Precipitates During Transient Creep
,”
Metall. Mater. Trans. A
,
26
(
4
), pp.
905
914
.
21.
Wu
,
X. J.
,
2019
,
Deformation and Evolution of Life in Crystalline Materials: An Integrated Creep-Fatigue Theory
,
CRC Press, Taylor & Francis
,
Boca Raton, FL
, pp.
91
138
.
22.
Wu
,
X. J.
,
2015
, “
An Integrated Creep-Fatigue Theory for Material Damage Modeling
,”
Key Eng. Mater.
,
627
, pp.
341
344
.
23.
Zhang
,
X. Z.
,
Wu
,
X. J.
,
Liu
,
R.
,
Liu
,
J.
, and
Yao
,
M. X.
,
2017
, “
Deformation-Mechanism-Based Modeling of Creep Behavior of Modified 9Cr-lMo Steel
,”
Mater. Sci. Eng. A
,
689
, pp.
345
352
.
24.
Wu
,
X. J.
,
Zhang
,
X. Z.
,
Liu
,
R.
, and
Yao
,
M. X.
,
2020
, “
Creep Performance Modeling of Modified 9Cr–1Mo Steels With Oxidation
,”
Metall. Mater. Trans. A
,
51
(
3
), pp.
1134
1147
.
25.
Xiao
,
B.
,
Xu
,
L.
,
Zhao
,
L.
,
Jing
,
H.
, and
Han
,
Y.
,
2019
, “
Deformation-Mechanism-Based Creep Model and Damage Mechanism of G115 Steel Over a Wide Stress Range
,”
Mater. Sci. Eng. A
,
743
, pp.
280
293
.
26.
Lu
,
C. Y.
,
Wu
,
X. J.
,
He
,
Y. M.
,
Gao
,
Z. L.
, and
Yang
,
J. G.
,
2019
, “
Deformation Mechanism-Based True-Stress Creep Model for SA508 Gr.3 Steel Over the Temperature Range of 450–750 °C
,”
J. Nucl. Mater.
,
526
, p.
151776
.
27.
Lu
,
C. Y.
,
Wang
,
P.
,
Zheng
,
S. L.
,
Wu
,
X. J.
,
Liu
,
R.
,
He
,
Y. M.
,
Yang
,
J. G.
,
Gao
,
Z. L.
, and
Tu
,
S. T.
,
2023
, “
Creep Behavior and Life Prediction of a Reactor Pressure Vessel Steel Above Phase Transformation Temperature Via a Deformation Mechanism-Based Creep Model
,”
Fatigue Fract. Eng. Mater. Struct.
,
46
(
9
), pp.
3312
3359
.
28.
Shingledecker
,
J. P.
,
Purgert
,
R.
, and
Rawls
,
P
.,
2014
, “
Current Status of the US DOE/OCDO A-USC Materials Technology Research and Development Program
,”
Proceedings of the Seventh International Conference on Advances in Materials Technology for Fossil Power Plants
,
Hawaii, HI
,
Oct. 22–25
, pp.
41
52
.
29.
Wang
,
M.
,
Wang
,
W.
,
Liu
,
Z.
,
Sun
,
C.
, and
Qian
,
L.
,
2018
, “
Hot Workability Integrating Processing and Activation Energy Maps of Inconel 740 Superalloy
,”
Mater. Today Commun.
,
14
, pp.
188
198
.
You do not currently have access to this content.