Abstract

The current work presents an understanding of microstructure and mechanical properties as a function of build geometry and build orientation in Cu-Cr-Zr via the laser powder bed fusion (LPBF) technique. Porosity, microstructure, and mechanical properties have been compared in as-printed (AP) and heat-treated (HT) LPBF Cu-Cr-Zr, between cylindrical and cube geometries, along the longitudinal (L) and transverse (T) build orientations. Varying porosity levels were observed that yielded parts with 96–97% relative density in the AP condition. The AP microstructure demonstrated a hierarchical microstructure, comprising grains (2.5–100 μm) with a cellular substructure (400–850 nm) and intracellular nanoscale (20–60 nm) precipitates. Unlike most materials in the AP condition, crystallographic texture was found to be absent; however, very distinct river-like patterns highlighted a novel feature of the LPBF Cu-Cr-Zr. Upon solutionizing and aging, Cr precipitates were seen heterogeneously nucleating along cell boundaries (0.5–1.3 μm), causing up to 45% enhancement in the strength and a 4–5% lower ductility. The yield strength along the transverse orientation was 10–16% higher than that of longitudinal orientation, in both the AP and HT conditions. Fracture surface of the tensile samples exhibited micro-voids, cleavage facets, and unmelted particles. Despite the porosity, overall mechanical properties matched well with those obtained in nearly dense (>99%) samples and the mechanical property debit was less than 10%.

References

1.
Zinkle
,
S. J.
, and
Fabritsiev
,
S. A.
,
1994
, “
Copper Alloys for High Heat Flux Structure Applications
,”
At. Plasma-Material Interact. Data Fusion (Supplement to Nucl. Fusion)
,
5
, pp.
163
191
.
2.
Kalinin
,
G.
, and
Matera
,
R.
,
1998
, “
Comparative Analysis of Copper Alloys for the Heat Sink of Plasma Facing Components in ITER
,”
J. Nucl. Mater.
,
258–263
(
Part 1
), pp.
345
350
.
3.
Barabash
,
V.
,
Peacock
,
A.
,
Fabritsiev
,
S.
,
Kalinin
,
G.
,
Zinkle
,
S.
,
Rowcliffe
,
A.
,
Rensman
,
J.-W.
, et al
,
2007
, “
Materials Challenges for ITER—Current Status and Future Activities
,”
J. Nucl. Mater.
,
367–370
(
Part A
), pp.
21
32
.
4.
de Groh
,
H. C.
,
Ellis
,
D. L.
, and
Loewenthal
,
W. S.
,
2008
, “
Comparison of GRCop-84 to Other Cu Alloys With High Thermal Conductivities
,”
J. Mater. Eng. Perform.
,
17
(
4
), pp.
594
606
.
5.
Liu
,
Q.
,
Zhang
,
X.
,
Ge
,
Y.
,
Wang
,
J.
, and
Cui
,
J. Z.
,
2006
, “
Effect of Processing and Heat Treatment on Behavior of Cu-Cr-Zr Alloys to Railway Contact Wire
,”
Metall. Mater. Trans. A
,
37
(
11
), pp.
3233
3238
.
6.
Kulczyk
,
M.
,
Pachla
,
W.
,
Godek
,
J.
,
Smalc-Koziorowska
,
J.
,
Skiba
,
J.
,
Przybysz
,
S.
,
Wróblewska
,
M.
, and
Przybysz
,
M.
,
2018
, “
Improved Compromise Between the Electrical Conductivity and Hardness of the Thermo-Mechanically Treated CuCrZr Alloy
,”
Mater. Sci. Eng. A
,
724
, pp.
45
52
.
7.
Weatherly
,
G. C.
,
Humble
,
P.
, and
Borland
,
D.
,
1979
, “
Precipitation in a Cu-0, 55 wt% Cr Alloy
,”
Acta Metall.
,
27
(
12
), pp.
1815
1828
.
8.
Rdzawski
,
Z.
, and
Stobrawa
,
J.
,
1986
, “
Structure of Coherent Chromium Precipitates in Aged Copper Alloys
,”
Scr. Metall.
,
20
(
3
), pp.
341
344
.
9.
Kanno
,
M.
,
1988
, “
Effect of a Small Addition of Zirconium on Hot Ductility of a Cu-Cr Alloy
,”
Z. Metallkde
,
79
(
10
), pp.
684
688
.
10.
Batawi
,
E.
,
Morris
,
D. G.
, and
Morris
,
M. A.
,
1990
, “
Effect of Small Alloying Additions on Behaviour of Rapidly Solidified Cu–Cr Alloys
,”
Mater. Sci. Technol.
,
6
(
9
), pp.
892
899
.
11.
Batra
,
S.
,
Dey
,
G. K.
,
Kulkarni
,
U. D.
, and
Banerjee
,
S.
,
2001
, “
Microstructure and Properties of a Cu–Cr–Zr Alloy
,”
J. Nucl. Mater.
,
299
(
2
), pp.
91
100
.
12.
Kapoor
,
K.
,
Lahiri
,
D.
,
Batra
,
I. S.
,
Rao
,
S. V. R.
, and
Sanyal
,
T.
,
2005
, “
X-ray Diffraction Line Profile Analysis for Defect Study in Cu-1 wt% Cr-0.1 wt% Zr Alloy
,”
Mater. Charact.
,
54
(
2
), pp.
131
140
.
13.
Zeng
,
K. J.
,
Hamalainen
,
M.
, and
Lilius
,
K.
,
1995
, “
Phase Relationships in Cu-Rich Corner of the Cu-Cr-Zr Phase Diagram
,”
Scr. Metall. Mater
,
32
(
12
), pp.
2009
2014
.
14.
Fuxiang
,
H.
,
Jusheng
,
M.
,
Honglong
,
N.
,
Zhiting
,
G.
,
Chao
,
L.
,
Shumei
,
G.
,
Xuetao
,
Y.
,
Tao
,
W.
,
Hong
,
L.
, and
Huafen
,
L.
,
2003
, “
Analysis of Phases in a Cu–Cr–Zr Alloy
,”
Scr. Mater
,
48
(
1
), pp.
97
102
.
15.
Chbihi
,
A.
,
Sauvage
,
X.
, and
Blavette
,
D.
,
2012
, “
Atomic Scale Investigation of Cr Precipitation in Copper
,”
Acta Mater.
,
60
(
11
), pp.
4575
4585
.
16.
Wrobel
,
R.
,
Scholes
,
B.
,
Hussein
,
A.
,
Law
,
R.
,
Mustaffar
,
A.
, and
Reay
,
D.
,
2020
, “
A Metal Additively Manufactured (MAM) Heat Exchanger for Electric Motor Thermal Control on a High-Altitude Solar Aircraft—Experimental Characterisation
,”
Therm. Sci. Eng. Prog.
,
19
, p.
100629
.
17.
Luque
,
S.
,
Menéndez
,
G.
,
Roccabruna
,
M.
,
González-Aguilar
,
J.
,
Crema
,
L.
, and
Romero
,
M.
,
2018
, “
Exploiting Volumetric Effects in Novel Additively Manufactured Open Solar Receivers
,”
Sol. Energy
,
174
, pp.
342
351
.
18.
Haertel
,
J. H. K.
, and
Nellis
,
G. F.
,
2017
, “
A Fully Developed Flow Thermofluid Model for Topology Optimization of 3D-Printed Air-Cooled Heat Exchangers
,”
Appl. Therm. Eng.
,
119
, pp.
10
24
.
19.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
State-of-the-Art in Heat Exchanger Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
178
, p.
121600
.
20.
Toyserkani
,
E.
,
Sarker
,
D.
,
Ibhadode
,
O. O.
,
Liravi
,
F.
,
Russo
,
P.
, and
Taherkhani
,
K.
,
2021
,
Metal Additive Manufacturing
,
Wiley
,
Hoboken
.
21.
Buchmayr
,
B.
,
Panzl
,
G.
,
Walzl
,
A.
, and
Wallis
,
C.
,
2017
, “
Laser Powder Bed Fusion—Materials Issues and Optimized Processing Parameters for Tool Steels, AlSiMg- and CuCrZr-Alloys
,”
Adv. Eng. Mater.
,
19
(
4
), p.
1600667
.
22.
Wallis
,
C.
, and
Buchmayr
,
B.
,
2019
, “
Effect of Heat Treatments on Microstructure and Properties of CuCrZr Produced by Laser-Powder Bed Fusion
,”
Mater. Sci. Eng. A
,
744
, pp.
215
223
.
23.
Jahns
,
K.
,
Bappert
,
R.
,
Böhlke
,
P.
, and
Krupp
,
U.
,
2020
, “
Additive Manufacturing of CuCr1Zr by Development of a Gas Atomization and Laser Powder Bed Fusion Routine
,”
Int. J. Adv. Manuf. Technol.
,
107
(
5–6
), pp.
2151
2161
.
24.
Bai
,
Y.
,
Zhao
,
C.
,
Zhang
,
Y.
,
Chen
,
J.
, and
Wang
,
H.
,
2021
, “
Additively Manufactured CuCrZr Alloy: Microstructure, Mechanical Properties and Machinability
,”
Mater. Sci. Eng. A
,
819
, p.
141528
.
25.
Wegener
,
T.
,
Koopmann
,
J.
,
Richter
,
J.
,
Krooß
,
P.
, and
Niendorf
,
T.
,
2021
, “
CuCrZr Processed by Laser Powder Bed Fusion—Processability and Influence of Heat Treatment on Electrical Conductivity, Microstructure and Mechanical Properties
,”
Fatigue Fract. Eng. Mater. Struct.
,
44
(
9
), pp.
2570
2590
.
26.
Salvan
,
C.
,
Briottet
,
L.
,
Baffie
,
T.
,
Guetaz
,
L.
, and
Flament
,
C.
,
2021
, “
CuCrZr Alloy Produced by Laser Powder Bed Fusion: Microstructure, Nanoscale Strengthening Mechanisms, Electrical and Mechanical Properties
,”
Mater. Sci. Eng. A
,
826
, p.
141915
.
27.
Guan
,
P.
,
Chen
,
X.
,
Liu
,
P.
,
Sun
,
F.
,
Zhu
,
C.
,
Zhou
,
H.
,
Fu
,
S.
,
Wu
,
Z.
, and
Zhu
,
Y.
,
2019
, “
Effect of Selective Laser Melting Process Parameters and Aging Heat Treatment on Properties of CuCrZr Alloy
,”
Mater. Res. Express
,
6
(
11
), p.
1165c1
.
28.
Sun
,
F.
,
Liu
,
P.
,
Chen
,
X.
,
Zhou
,
H.
,
Guan
,
P.
, and
Zhu
,
B.
,
2020
, “
Mechanical Properties of High-Strength Cu–Cr–Zr Alloy Fabricated by Selective Laser Melting
,”
Materials
,
13
(
21
), p.
5028
.
29.
Kok
,
Y.
,
Tan
,
X. P.
,
Wang
,
P.
,
Nai
,
M. L. S.
,
Loh
,
N. H.
,
Liu
,
E.
, and
Tor
,
S. B.
,
2018
, “
Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review
,”
Mater. Des.
,
139
, pp.
565
586
.
30.
Du Plessis
,
A.
,
Yadroitsava
,
I.
, and
Yadroitsev
,
I.
,
2020
, “
Effects of Defects on Mechanical Properties in Metal Additive Manufacturing: A Review Focusing on X-ray Tomography Insights
,”
Mater. Des.
,
187
, p.
108385
.
You do not currently have access to this content.