Abstract

This study used a suitable solvent such as deionized water and aqueous acetic acid to dissolve completely polymer blends such as gelatin: chitosan: pullulan (G: CS: PUL) with mixing ratios of 80:10:10, 60:20:20, 40:30:30, and 20:40:40, respectively. The properties of natural polymer mixtures, viscosity, surface tension, and electrical conductivity were examined, and the fiber diameter and nanofiber diameter distribution were measured. Increasing the gelatin content from 20% to 80% in the G: CS: PUL increases the properties of biopolymer solutions, such as viscosity, surface tension, and electrical conductivity of 157%, 14%, and 37%, respectively. In addition, increasing the gelatin content reduces the contact angle by 55%. In other words, the average diameter of the nanofibers increased from 91.177 ± 27.162 to 212.46 ± 67.91 nm with the increase of the gelatin content by 40–100% in the blends and obtaining uniform fibers without beads, which enhanced the ability of nanofibers for releasing into the aqueous media and enhancing their use in packaging food such as (80:10:10 and 60:20:20). Moreover, the blend ratio 60:30:30 (G:CS: PUL) had better resistance to bacterial growth; the inhibition zone diameters were 26 and 23 mm for E. coli and S. aureus and had better average crystalline size and crystallinity.

References

1.
Simionescu
,
B. C.
, and
Ivanov
,
D.
,
2016
, “Natural and Synthetic Polymers for Designing Composite Materials,”
Handbook of Bioceramics and Biocomposites
,
Springer
,
Cham
.
2.
Liu
,
H.
,
Gough
,
C. R.
,
Deng
,
Q.
,
Gu
,
Z.
,
Wang
,
F.
, and
Hu
,
X.
,
2020
, “
Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications
,”
Int. J. Mol. Sci.
,
21
(
11
), p.
4019
.
3.
Habeeb
,
S.
,
Rajabi
,
L.
, and
Dabirian
,
F.
,
2019
, “
Comparing Two Electrospinning Methods in Producing Polyacrylonitrile Nanofibrous Tubular Structures With Enhanced Properties
,”
Iran. J. Chem. Chem. Eng.
,
38
(
3
), pp.
23
42
.
4.
Habeeb
,
S. A.
, and
Nadhim
,
B. A.
,
2022
, “
Removal of Nickel (II) Ions, Low Level Pollutants, and Total Bacterial Colony Count From Wastewater by Composite Nanofibers Film
,”
Sci. Iran.
5.
Abdulkadhim
,
M. K.
, and
Habeeb
,
S. A.
,
2023
, “
Electro Spun Uniform Nanofiber From Gelatin: Chitosan at Low Concentration
,”
Mater. Today: Proc.
,
87
(Part 1), pp.
299
306
.
6.
Aman Mohammadi
,
M.
,
Rostami
,
M. R.
,
Raeisi
,
M.
, and
Tabibi Azar
,
M.
,
2018
, “
Production of Electrospun Nanofibers From Food Proteins and Polysaccharides and Their Applications in Food and Drug Sciences
,”
Jorjani Biomed. J.
,
6
(
4
), pp.
62
77
.
7.
Rashidi
,
L.
, and
Khosravi-Darani
,
K.
,
2011
, “
The Applications of Nanotechnology in Food Industry
,”
Crit. Rev. Food Sci. Nutr.
,
51
(
8
), pp.
723
730
.
8.
Marsh
,
K.
, and
Bugusu
,
B.
,
2007
, “
Food Packaging—Roles, Materials, and Environmental Issues
,”
J. Food Sci.
,
72
(
3
), pp.
R39
R55
.
9.
Wang
,
H.
,
Ding
,
F.
,
Ma
,
L.
, and
Zhang
,
Y.
,
2021
, “
Recent Advances in Gelatine and Chitosan Complex Material for Practical Food Preservation Application
,”
Int. J. Food Sci.
,
56
(
12
), pp.
6279
6300
.
10.
Dutta
,
P. K.
,
Tripathi
,
S.
,
Mehrotra
,
G. K.
, and
Dutta
,
J.
,
2009
, “
Perspectives for Chitosan Based Antimicrobial Films in Food Applications
,”
Food Chem.
,
114
(
4
), pp.
1173
1182
.
11.
Hajinasrollah
,
K.
,
Habibi
,
S.
, and
Nazockdast
,
H.
,
2019
, “
Fabrication of Gelatin–Chitosan–Gum Tragacanth With Thermal Annealing Cross-Linking Strategy
,”
J. Eng. Fibers Fabr.
,
14
, p.
1558925019881142
.
12.
Zhuang
,
X.
,
Cheng
,
B.
,
Kang
,
W.
, and
Xu
,
X.
,
2010
, “
Electrospun Chitosan/Gelatin Nanofibers Containing Silver Nanoparticles
,”
Carbohydr. Polym.
,
82
(
2
), pp.
524
527
.
13.
Lin
,
L.
,
Lv
,
S.
, and
Li
,
B.
,
2012
, “
Angiotensin-I-converting Enzyme (ACE)-Inhibitory and Antihypertensive Properties of Squid Skin Gelatin Hydrolysates
,”
Food Chem.
,
131
(
1
), pp.
225
230
.
14.
Assani
,
K.
,
2018
, “
M1 to M2 Macrophage Induction Using Retinoic Acid and Mesenchymal Stem Cells Loaded on an Electrospun Pullulan/Gelatin Scaffold To Promote Healing of Chronic Wounds
,”
MSc thesis
,
Wright State University
,
Fairborn, OH
.
15.
Woo
,
C. H.
,
Choi
,
Y. C.
,
Choi
,
J. S.
,
Lee
,
H. Y.
, and
Cho
,
Y. W.
,
2015
, “
A Bilayer Composite Composed of TiO2-Incorporated Electrospun Chitosan Membrane and Human Extracellular Matrix Sheet as a Wound Dressing
,”
J. Biomater. Sci. Polym. Ed.
,
26
(
13
), pp.
841
854
.
16.
Antaby
,
E.
,
Klinkhammer
,
K.
, and
Sabantina
,
L.
,
2021
, “
Electrospinning of Chitosan for Antibacterial Applications—Current Trends
,”
Appl. Sci.
,
11
(
24
), p.
11937
.
17.
Rekha
,
M. R.
, and
Sharma
,
C. P.
,
2007
, “
Pullulan as a Promising Biomaterial for Biomedical Applications: A Perspective
,”
Trends Biomater. Artif.
,
20
(
2
), pp.
116
121
. http://www.sbaoi.org/society_journal.htm
18.
Qian
,
Y.
,
Qi
,
M.
,
Zheng
,
L.
,
King
,
M. W.
,
Lv
,
L.
, and
Ye
,
F.
,
2016
, “
Incorporation of Rutin in Electrospun Pullulan/PVA Nanofibers for Novel UV-Resistant Properties
,”
Materials
,
9
(
7
), p.
504
.
19.
Habeeb
,
S. A.
,
Nadhim
,
B. A.
,
Kadhim
,
B. J.
,
Ktab
,
M. S.
,
Kadhim
,
A. J.
, and
Murad
,
F. S.
,
2023
, “
Improving the Physical Properties of Nanofibers Prepared by Electrospinning From Polyvinyl Chloride and Polyacrylonitrile at Low Concentrations
,”
Adv. Polym. Technol.
,
2023
, p.
1811577
.
20.
Sam
,
S. T.
,
Nuradibah
,
M. A.
,
Chin
,
K. M.
, and
Hani
,
N.
,
2016
, “Current Application and Challenges on Packaging Industry Based on Natural Polymer Blending,”
Natural Polymers: Industry Techniques and Applications
,
Springer
,
Cham
.
21.
Elsabee
,
M. Z.
, and
Abdou
,
E. S.
,
2013
, “
Chitosan Based Edible Films and Coatings: A Review
,”
Mater. Sci. Eng. C
,
33
(
4
), pp.
1819
1841
.
22.
Asma
,
C.
,
Meriem
,
E.
,
Mahmoud
,
B.
, and
Djaafer
,
B.
,
2014
, “
Physicochemical Characterization of Gelatin-cmc Composite Edibles Films From Polyion-Complex Hydrogels
,”
J. Chil. Chem. Soc.
,
59
(
1
), pp.
2279
2283
.
23.
Stijnman
,
A. C.
,
Bodnar
,
I.
, and
Hans Tromp
,
R.
,
2011
, “
Electrospinning of Food-Grade Polysaccharides
,”
Food Hydrocoll.
,
25
(
5
), pp.
1393
1398
.
24.
Lannutti
,
J.
,
Reneker
,
D.
,
Ma
,
T.
,
Tomasko
,
D.
, and
Farson
,
D.
,
2007
, “
Electrospinning for Tissue Engineering Scaffolds
,”
Mater. Sci. Eng. C
,
27
(
3
), pp.
504
509
.
25.
Sill
,
T. J.
, and
Von Recum
,
H. A.
,
2008
, “
Electrospinning: Applications in Drug Delivery and Tissue Engineering
,”
Biomaterials
,
29
(
13
), pp.
1989
2006
.
26.
Geng
,
X.
,
Kwon
,
O. H.
, and
Jang
,
J.
,
2005
, “
Electrospinning of Chitosan Dissolved in Concentrated Acetic Acid Solution
,”
Biomaterials
,
26
(
27
), pp.
5427
5432
.
27.
He
,
J. H.
,
Liu
,
Y.
,
Mo
,
L. F.
,
Wan
,
Y. Q.
, and
Xu
,
L.
,
2008
,
Electrospun Nanofibres and Their Applications
,
ISmithers
,
Shawbury, UK
.
28.
Nadhim
,
B. A.
, and
Habeeb
,
S. A.
,
2021
, “
Studying the Physical Properties of Non-Woven Polyacrylonitrile Nanofibers After Adding γ-Fe2O3 Nanoparticles
,”
Egypt. J. Chem.
,
64
(
12
), pp.
7621
7630
.
29.
Habeeb
,
S. A.
,
2021
, “
Impact of Polymeric Solutions Parameters on Morphological Properties of Composite Nanofibers
,”
J. Univ. Babylon Eng. Sci.
,
29
(
2
), pp.
115
120
.
30.
Habeeb
,
S. A.
,
Rajabi
,
L.
, and
Dabirian
,
F.
,
2020
, “
Production of Polyacrylonitrile/Boehmite Nanofibrous Composite Tubular Structures by Opposite-Charge Electrospinning With Enhanced Properties From a Low-Concentration Polymer Solution
,”
Polym. Compos.
,
41
(
4
), pp.
1649
1661
.
31.
Cengiz
,
F.
,
Dao
,
T. A.
, and
Jirsak
,
O.
,
2010
, “
Influence of Solution Properties on the Roller Electrospinning of Poly (Vinyl Alcohol)
,”
Polym. Eng. Sci.
,
50
(
5
), pp.
936
943
.
32.
Valgas
,
C.
,
Souza
,
S. M. D.
,
Smânia
,
E. F.
, and
Smânia
,
A.
, Jr.
,
2007
, “
Screening Methods to Determine Antibacterial Activity of Natural Products’
,”
Braz. J. Microbiol.
,
38
, pp.
369
380
.
33.
Faris
,
D.
,
Hadi
,
N. J.
, and
Habeeb
,
S. A.
,
2021
, “
Effect of Rheological Properties of (Poly Vinyl Alcohol/Dextrin/Naproxen) Emulsion on the Performance of Drug Encapsulated Nanofibers
,”
Mater. Today: Proc.
,
42
(Part 5), pp.
2725
2732
.
34.
Stepanyan
,
R.
,
Subbotin
,
A. V.
,
Cuperus
,
L.
,
Boonen
,
P.
,
Dorschu
,
M.
,
Oosterlinck
,
F.
, and
Bulters
,
M. J. H.
,
2016
, “
Nanofiber Diameter in Electrospinning of Polymer Solutions: Model and Experiment
,”
Polymer
,
97
, pp.
428
439
.
35.
Wang
,
Y.
,
Guo
,
Z.
,
Qian
,
Y.
,
Zhang
,
Z.
,
Lyu
,
L.
,
Wang
,
Y.
, and
Ye
,
F.
,
2019
, “
Study on the Electrospinning of Gelatin/Pullulan Composite Nanofibers
,”
Polymers
,
11
(
9
), p.
1424
.
36.
Haghi
,
A. K.
, and
Akbari
,
M.
,
2007
, “
Trends in Electrospinning of Natural Nanofibers
,”
Phys. Status Solidi A
,
204
(
6
), pp.
1830
1834
.
37.
Amjadi
,
S.
,
Nazari
,
M.
,
Alizadeh
,
S. A.
, and
Hamishehkar
,
H.
,
2020
, “
Multifunctional Betanin Nanoliposomes-Incorporated Gelatin/Chitosan Nanofiber/ZnO Nanoparticles Nanocomposite Film for Fresh Beef Preservation
,”
Meat Sci.
,
167
, p.
108161
.
38.
Li
,
C.
, and
Li
,
J. B.
,
2017
, “
Preparation of Chitosan-Ferulic Acid Conjugate: Structure Characterization and in the Application of Pharmaceuticals
,”
Int. J. Biol. Macromol.
,
105
(Part 2), pp.
1539
1543
.
39.
Abdulkadhim
,
M. K.
, and
Habeeb
,
S. A.
,
2022
, “
The Possibility of Producing Uniform Nanofibers From Blends of Natural Biopolymers
,”
Mater. Perform. Charact.
,
11
(
1
), pp.
313
323
.
40.
Sun
,
L.
,
Sun
,
J.
,
Chen
,
L.
,
Niu
,
P.
,
Yang
,
X.
, and
Guo
,
Y.
,
2017
, “
Preparation and Characterization of Chitosan Film Incorporated With Thinned Young Apple Polyphenols as an Active Packaging Material
,”
Carbohydr. Polym.
,
163
, pp.
81
91
.
41.
Mathew
,
S.
, and
Abraham
,
T. E.
,
2008
, “
Characterisation of Ferulic Acid Incorporated Starch–Chitosan Blend Films
,”
Food Hydrocoll.
,
22
(
5
), pp.
826
835
.
42.
Saber-Samandari
,
S.
,
Gulcan
,
H. O.
,
Saber-Samandari
,
S.
, and
Gazi
,
M.
,
2014
, “
Efficient Removal of Anionic and Cationic Dyes From an Aqueous Solution Using Pullulan-Graft-Polyacrylamide Porous Hydrogel
,”
Water Air Soil Pollut.
,
225
(
11
), pp.
1
14
.
43.
Ferreira
,
J. L.
,
Gomes
,
S.
,
Henriques
,
C.
,
Borges
,
J. P.
, and
Silva
,
J. C.
,
2014
, “
Electrospinning Polycaprolactone Dissolved in Glacial Acetic Acid: Fiber Production, Nonwoven Characterization, and In Vitro Evaluation
,”
J. Appl. Polym. Sci.
,
131
(
22
).
44.
Lungoci
,
C.
,
Rîmbu
,
C. M.
,
Motrescu
,
I.
,
Serbezeanu
,
D.
,
Horhogea
,
C. E.
,
Vlad-Bubulac
,
T.
,
Ghițău
,
C. S.
,
Puiu
,
I.
,
Neculai-Văleanu
,
A. S.
, and
Robu
,
T.
,
2023
, “
Evaluation of the Antibacterial Properties of Polyvinyl Alcohol-Pullulan Scaffolds Loaded With Nepeta Racemosa Lam, Essential Oil and Perspectives for Possible Applications
,”
Plants
,
12
(
4
), p.
898
.
45.
Deng
,
L.
,
Zhang
,
X.
,
Li
,
Y.
,
Que
,
F.
,
Kang
,
X.
,
Liu
,
Y.
,
Feng
,
F.
, and
Zhang
,
H.
,
2018
, “
Characterization of Gelatin/Zein Nanofibers by Hybrid Electrospinning
,”
Food Hydrocoll.
,
75
, pp.
72
80
.
46.
Qin
,
Z. Y.
,
Jia
,
X. W.
,
Liu
,
Q.
,
Kong
,
B. H.
, and
Wang
,
H.
,
2019
, “
Fast Dissolving Oral Films for Drug Delivery Prepared From Chitosan/Pullulan Electrospinning Nanofibers
,”
Int. J. Biol. Macromol.
,
137
, pp.
224
231
.
47.
Mathew
,
S. A.
, and
Arumainathan
,
S.
,
2022
, “
Crosslinked Chitosan–Gelatin Biocompatible Nanocomposite as a Neuro Drug Carrier
,”
ACS Omega
,
7
(
22
), pp.
18732
18744
.
48.
Rodríguez-Sánchez
,
I. J.
,
Fuenmayor
,
C. A.
,
Clavijo-Grimaldo
,
D.
, and
Zuluaga-Domínguez
,
C. M.
,
2021
, “
Electrospinning of Ultra-Thin Membranes With Incorporation of Antimicrobial Agents for Applications in Active Packaging: A Review
,”
Int. J. Polym. Mater. Polym. Biomater.
,
70
(
15
), pp.
1053
1076
.
49.
Ke
,
C. L.
,
Deng
,
F. S.
,
Chuang
,
C. Y.
, and
Lin
,
C. H.
,
2021
, “
Antimicrobial Actions and Applications of Chitosan
,”
Polymers
,
13
(
6
), p.
904
.
You do not currently have access to this content.