Abstract

Microstructural evolution and resulting stress, strain, and concentration field distribution during Al3X (X = Sc, Zr, Er) precipitation in Al matrix are investigated in this work using the 3D-multiphase field method. Depending on the heat treatment, modulus mismatch, lattice parameter mismatch, and interfacial free energy, precipitate developed to rhombicuboctahedron, and near cuboidal morphologies. The composition distribution and Al–Al3X transformation driving force map identified a difference in precipitation kinetics for each alloy. The precipitation mechanism in the three systems is analyzed in detail with temporal evolution plots of energy components during phase transformation. Al3Er precipitate exhibits the highest growth rate due to Er's high diffusivity and significant lattice parameter mismatch in the Al–Er system. The system has a high chemical and elastic driving force for particle growth, thus attaining quasi-static equilibrium at a relatively lower temperature and time. Therefore, this system observes high magnitude stress, strain, and strain energy field around the Al matrix. The theoretical simulation results obtained from the present study will benefit aluminum multicomponent alloy design for high-strength applications.

References

1.
Fine
,
M. E.
,
1975
, “
Precipitation Hardening of Aluminum Alloys
,”
Metall. Trans. A
,
6
(
4
), pp.
625
630
.
2.
Starke
,
E. A.
, and
Staley
,
J. T.
,
1996
, “
Application of Modern Aluminum Alloys to Aircraft
,”
Prog. Aerosp. Sci
,
32
(
2–3
), pp.
131
172
.
3.
Miller
,
W. S.
,
Zhuang
,
L.
,
Bottema
,
J.
,
Wittebrood
,
A. J.
,
De Smet
,
P.
,
Haszler
,
A.
, and
Vieregge
,
A.
,
2000
, “
Recent Development in Aluminium Alloys for the Automotive Industry
,”
Mater. Sci. Eng. A
,
280
(
1
), pp.
37
49
.
4.
Gleiter
,
H.
, and
Hornbogen
,
E.
,
1968
, “
Precipitation Hardening by Coherent Particles
,”
Mater. Sci. Eng.
,
2
(
6
), pp.
285
302
.
5.
Ardell
,
A. J.
,
2014
, “
The Effects of Elastic Interactions on Precipitate Microstructural Evolution in Elastically Inhomogeneous Nickel-Base Alloys
,”
Philos. Mag.
,
94
(
19
), pp.
2101
2130
.
6.
Ardell
,
A. J.
,
1985
, “
Precipitation Hardening
,”
Metall. Trans. A
,
16
(
12
), pp.
2131
2165
.
7.
Saha
,
S.
,
Todorova
,
T. Z.
, and
Zwanziger
,
J. W.
,
2015
, “
Temperature Dependent Lattice Misfit and Coherency of Al3X (X = Sc, Zr, Ti and Nb) Particles in an Al Matrix
,”
Acta Mater.
,
89
(
1
), pp.
109
115
.
8.
Abinandanan
,
T. A.
, and
Johnson
,
W. C.
,
1993
, “
Coarsening of Elastically Interacting Coherent Particles-I. Theoretical Formulation
,”
Acta Metall. Mater.
,
41
(
1
), pp.
17
25
.
9.
Zhao
,
X.
,
Duddu
,
R.
,
Bordas
,
S. P. A.
, and
Qu
,
J.
,
2013
, “
Effects of Elastic Strain Energy and Interfacial Stress on the Equilibrium Morphology of Misfit Particles in Heterogeneous Solids
,”
J. Mech. Phys. Solids
,
61
(
6
), pp.
1433
1445
.
10.
Doi
,
M.
,
1996
, “
Elasticity Effects on the Microstructure of Alloys Containing Coherent Precipitates
,”
Prog. Mater. Sci.
,
40
(
2
), pp.
79
180
.
11.
Fratzl
,
P.
,
Penrose
,
O.
, and
Lebowitz
,
J. L.
,
1999
, “
Modeling of Phase Separation in Alloys With Coherent Elastic Misfit
,”
J. Stat. Phys.
,
95
(
5/6
), pp.
1429
1503
.
12.
Khachaturyan
,
A. G.
,
Semenovskaya
,
S.
, and
Tsakalakos
,
T.
,
1995
, “
Elastic Strain Energy of Inhomogeneous Solids
,”
Phys. Rev. B
,
52
(
22
), pp.
15909
15919
.
13.
Schleifer
,
F.
,
Holzinger
,
M.
,
Lin
,
Y.-Y.
,
Glatzel
,
U.
, and
Fleck
,
M.
,
2020
, “
Phase Field Modeling of γ/γ’’ Microstructure Formation in Ni-Based Superalloys With High γ’’ Volume Fraction
,”
Intermetallics
,
120
, p.
106745
.
14.
Tsukada
,
Y.
,
Koyama
,
T.
,
Kubota
,
F.
,
Murata
,
Y.
, and
Kondo
,
Y.
,
2017
, “
Phase Field Simulation of Rafting Kinetics in a Nickel-Based Single Crystal Superalloy
,”
Intermetallics
,
85
, pp.
187
196
.
15.
Yu
,
Z. Y.
,
Wang
,
X. M.
,
Yue
,
Z. F.
, and
Sun
,
S. Y.
,
2020
, “
Visco-Plasticity Phase Field Simulation of the Mechanical Property and Rafting Behavior in Nickel-Based Superalloys
,”
Intermetallics
,
125
, pp.
106884-1
106884-12
.
16.
Zhang
,
C.
,
Yin
,
D.
,
Jiang
,
Y.
, and
Wang
,
Y.
,
2019
, “
Precipitation of L1 2-Phase Nano-Particles in Dilute Al-Er-Zr Alloys From the First-Principles
,”
Comput. Mater. Sci.
,
162
, pp.
171
177
.
17.
Vo
,
N. Q.
,
Dunand
,
D. C.
, and
Seidman
,
D. N.
,
2014
, “
Improving Aging and Creep Resistance in a Dilute Al-Sc Alloy by Microalloying With Si, Zr and Er
,”
Acta Mater.
,
63
, pp.
73
85
.
18.
Knipling
,
K. E.
,
Dunand
,
D. C.
, and
Seidman
,
D. N.
,
2006
, “
Criteria for Developing Castable, Creep-Resistant Aluminum-Based Alloys—A Review
,”
Int. J. Mater. Res.
,
97
, pp.
246
265
.
19.
Marquis
,
E. A.
, and
Seidman
,
D. N.
,
2001
, “
Nanoscale Structural Evolution of Al3Sc Precipitates in Al(Sc) Alloys
,”
Acta Mater.
,
49
(
11
), pp.
1909
1919
.
20.
Knipling
,
K. E.
,
Dunand
,
D. C.
, and
Seidman
,
D. N.
,
2007
, “
Nucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys
,”
Metall. Mater. Trans. A
,
38
(
10
), pp.
2552
2563
.
21.
Zhang
,
Y.
,
Gao
,
K.
,
Wen
,
S.
,
Huang
,
H.
,
Nie
,
Z.
, and
Zhou
,
D.
,
2014
, “
The Study on the Coarsening Process and Precipitation Strengthening of Al3Er Precipitate in Al-Er Binary Alloy
,”
J. Alloys Compd.
,
610
, pp.
27
34
.
22.
Rajinikanth
,
V.
,
Jindal
,
V.
,
Akkimardi
,
V. G.
,
Ghosh
,
M.
, and
Venkateswarlu
,
K.
,
2007
, “
Transmission Electron Microscopy Studies on the Effect of Strain on Al and Al-1% Sc Alloy
,”
Scr. Mater.
,
57
(
5
), pp.
425
428
.
23.
Li
,
H.
,
Bin
,
J.
,
Liu
,
J.
,
Gao
,
Z.
, and
Lu
,
X.
,
2012
, “
Precipitation Evolution and Coarsening Resistance at 400 °C of Al Microalloyed With Zr and Er
,”
Scr. Mater.
,
67
(
1
), pp.
73
76
.
24.
Iwamura
,
S.
, and
Miura
,
Y.
,
2004
, “
Loss in Coherency and Coarsening Behavior of Al3Sc Precipitates
,”
Acta Mater.
,
52
(
3
), pp.
591
600
.
25.
Souza
,
P. H. L.
,
Quaresma
,
J. M. V.
, and
Oliveira
,
C. A. S.
,
2017
, “
Precipitation Evolution and Modeling of Growth Kinetics of L12-Structured Al3Zr Particles in Al-0.22Zr and Al-0.32Zr (wt%) Alloys Isothermally Aged
,”
Mater. Res.
,
20
(
6
), pp.
1600
1613
.
26.
Steinbach
,
I.
,
Pezzolla
,
F.
,
Nestler
,
B.
,
Seeßelberg
,
M.
,
Prieler
,
R.
,
Schmitz
,
G. J.
, and
Rezende
,
J. L. L.
,
1996
, “
A Phase Field Concept for Multiphase Systems
,”
Phys. D: Nonlinear Phenom.
,
94
(
3
), pp.
135
147
.
27.
Steinbach
,
I.
, and
Apel
,
M.
,
2006
, “
Multi Phase Field Model for Solid State Transformation With Elastic Strain
,”
Phys. D: Nonlinear Phenom.
,
217
(
2
), pp.
153
160
.
28.
Schwarze
,
C.
,
Gupta
,
A.
,
Hickel
,
T.
, and
DarvishiKamachali
,
R.
,
2017
, “
Phase Field Study of Ripening and Rearrangement of Precipitates Under Chemomechanical Coupling
,”
Phys. Rev. B
,
95
(
17
), pp.
174101
174101-14
.
29.
Seidman
,
D. N.
,
Marquis
,
E. A.
, and
Dunand
,
D. C.
,
2002
, “
Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-Treatable Al(Sc) Alloys
,”
Acta Mater.
,
50
(
16
), pp.
4021
4035
.
30.
Knipling
,
K. E.
,
Karnesky
,
R. A.
,
Lee
,
C. P.
,
Dunand
,
D. C.
, and
Seidman
,
D. N.
,
2010
, “
Precipitation Evolution in Al-0.1Sc, Al-0.1Zr and Al-0.1Sc-0.1Zr (at%) Alloys During Isochronal Aging
,”
Acta Mater.
,
58
(
15
), pp.
5184
5195
.
31.
Karma
,
A.
,
2001
, “
Phase Field Formulation for Quantitative Modeling of Alloy Solidification
,”
Phys. Rev. Lett.
,
87
(
11
), p.
115701
.
32.
Li
,
D. L.
,
Chen
,
P.
,
Yi
,
J. X.
,
Tang
,
B. Y.
,
Peng
,
L. M.
, and
Ding
,
W. J.
,
2009
, “
Ab Initio Study on the Thermal Properties of the fcc Al3Mg and Al3Sc Alloys
,”
J. Phys. D: Appl. Phys.
,
42
(
22
), p.
225407
.
33.
Tamim
,
R.
, and
Mahdouk
,
K.
,
2018
, “
Thermodynamic Reassessment of the Al–Zr Binary System
,”
J. Therm. Anal. Calorim.
,
131
(
2
), pp.
1187
1200
.
34.
Mao
,
Z.
,
Seidman
,
D. N.
, and
Wolverton
,
C.
,
2011
, “
First-Principles Phase Stability, Magnetic Properties and Solubility in Aluminum-Rare-Earth (Al-RE) Alloys and Compounds
,”
Acta Mater.
,
59
(
9
), pp.
3659
3666
.
35.
Hu
,
H.
,
Zhao
,
M.
,
Wu
,
X.
,
Jia
,
Z.
,
Wang
,
R.
,
Li
,
W.
, and
Liu
,
Q.
,
2016
, “
The Structural Stability, Mechanical Properties and Stacking Fault Energy of Al3Zr Precipitates in Al-Cu-Zr Alloys: HRTEM Observations and First-Principles Calculations
,”
J. Alloys Compd.
,
681
, pp.
96
108
.
36.
Hu
,
Z.
,
Yin
,
Z.
,
Lin
,
J.
,
Zhang
,
L.
,
Qiu
,
S.
,
Yan
,
H.
,
Luo
,
C.
, and
Song
,
H.
,
2019
, “
Microstructural, Electronic, and Mechanical Properties of L12 Ordered Al3Er and Al3Yb Intermetallics: An Experimental and First-Principles Calculations
,”
Mater. Res. Express
,
6
(
11
), p.
116516
.
37.
Kochetov
,
M.
, and
Slawinski
,
M. A.
,
2009
, “
On Obtaining Effective Transversely Isotropic Elasticity Tensors
,”
J. Elast.
,
94
(
1
), pp.
1
13
.
38.
Xu
,
P.
,
Jiang
,
F.
,
Tang
,
Z.
,
Yan
,
N.
,
Jiang
,
J.
,
Xu
,
X.
, and
Peng
,
Y
,
2019
, “
Coarsening of Al3Sc Precipitates in Al-Mg-Sc Alloys
,”
J. Alloys Compd.
,
781
, pp.
209
215
.
39.
Karnesky
,
R. A.
,
Dunand
,
D. C.
, and
Seidman
,
D. N.
,
2009
, “
Evolution of Nanoscale Precipitates in Al Microalloyed With Sc and Er
,”
Acta Mater.
,
57
(
14
), pp.
4022
4031
.
40.
Wang
,
H.
,
Li
,
Y.
,
Zhang
,
X.
,
Cheng
,
Z.
, and
Li
,
K.
,
2021
, “
Composition Distribution and Kinetics Evolution of γ′ Phase in Ni-(17−x) Al-x Mo (at%) Alloys
,”
J. Mater. Res. Technol.
,
15
, pp.
561
571
.
41.
Zhang
,
Y.
,
Gao
,
K.
,
Wen
,
S.
,
Huang
,
H.
,
Wang
,
W.
,
Zhu
,
Z.
, et al
,
2014
, “
Determination of Er and Yb Solvuses and Trialuminide Nucleation in Al-Er and Al-Yb Alloys
,”
J. Alloys Compd.
,
590
, pp.
526
534
.
You do not currently have access to this content.