Abstract

This study investigates the mean stress effect on the fatigue strength and the mean stress effect criterion that best represents this effect in Cu–Ni–Si alloy strips using a new test method. Since the cyclic bending fatigue test based on the fatigue test standard for Japan Copper and Brass Association for understanding the fatigue characteristics of Cu–Ni–Si alloy strips needs many test times, a new test method to conduct effectively was examined and developed, and after confirming its validity, the mean stress effect criterion was identified using this method. The effect of surface electroplating on fatigue properties was also investigated. As a result, it was confirmed that the mean stress effect criterion on the fatigue strength of Cu–Si–Ni alloy strips was represented well by the elliptic line. The effect of surface electrolytic plating on fatigue properties was found to be strongly influenced by surface roughness rather than Young’s modulus or hardness of the constituent plating.

References

1.
Burkacky
,
O.
,
Deichmann
,
J.
, and
Stein
,
J. P.
,
2019
,
Automotive Software and Electronics 2030: Mapping the Sector’s Future Landscape
,
McKinsey & Company
,
München Germany
.
2.
Cornet
,
A.
,
Heuss
,
R.
,
Tschiesner
,
A.
,
Hensley
,
R.
,
Hertzke
,
P.
,
Möller
,
T.
,
Schaufuss
,
P.
,
Conzade
,
J.
,
Schenk
,
S.
, and
Laufenberg
,
K. v.
,
2021
,
Why the Automotive Future Is Electric: Mainstream EVs Will Transform the Automotive Industry and Help Decarbonize the Planet
,
McKinsey & Company
,
München Germany
.
3.
Soulopoulos
,
N.
,
Boers
,
M.
,
Fisher
,
R.
,
O’Donovan
,
A.
, and
Mckerrancher
,
C.
,
2021
,
Hitting the EV Inflection Point
,
New York
.
4.
Yamaguchi
,
T.
, and
Mita
,
N.
,
2016
, “
An Approach to Foating Connector on Vibration
,”
J. Japan Inst. Electron. Packag. (in Japanese)
,
19
(
5
), pp.
325
327
.
5.
Nishimura
,
N.
,
Otsuka
,
T.
,
Imasato
,
F.
,
Kusakari
,
M.
,
Akasofu
,
Y.
, and
Sasaki
,
A.
,
2014
, “
Aluminum Wiring Harness
,”
SEI Tech. Rev.
,
79
, pp.
8
13
.
6.
Kaneko
,
H.
,
Hirose
,
K.
,
Satio
,
K.
,
Tanaka
,
N.
,
Kanamori
,
H.
,
Mihara
,
K.
, and
Eguchi
,
T.
,
2010
, “
Development of a Cu-Ni-Si Copper Alloy Strip for Narrow Pitch Connectors
,”
Furukawa Rev.
,
38
, pp.
1
7
.
7.
Deguchi
,
M.
,
Yamamoto
,
K.
,
Tobe
,
H.
, and
Sato
,
E.
,
2018
, “
Transient Creep Behavior and Dislocation Cell Structure Development During Creep-Fatigue Deformation of Fully Annealed Cu–Cr–Zr Alloy
,”
Int. J. Fatigue
,
116
(
11
), pp.
156
162
.
8.
Maki
,
K.
,
Ito
,
Y.
,
Matsunaga
,
H.
, and
Mori
,
H.
,
2013
, “
Solid-Solution Copper Alloys With High Strength and High Electrical Conductivity
,”
Scr. Mater.
,
68
(
10
), pp.
777
780
.
9.
Yang
,
H.
,
Ma
,
Z.
,
Lei
,
C.
,
Meng
,
L.
,
Fang
,
Y.
,
Liu
,
J.
, and
Wang
,
H.
,
2020
, “
High Strength and High Conductivity Cu Alloys: A Review
,”
Sci. China Technol. Sci.
,
63
(
12
), pp.
2505
2517
.
10.
Fu
,
S.
,
Liu
,
P.
,
Chen
,
X.
,
Zhou
,
H.
,
Ma
,
F.
,
Li
,
W.
, and
Zhang
,
K.
,
2021
, “
Effect of Aging Process on the Microstructure and Properties of Cu–Cr–Ti Alloy
,”
Mater. Sci. Eng. A
,
802
(
20
), p.
140598
.
11.
Congleton
,
J.
,
Parkins
,
R. N.
, and
Yu
,
J.
,
1985
, “
Intergranular and Transgranular Cracking of Cu–30Zn Brass During Fatigue Loading
,”
Mater. Sci. Technol.
,
1
(
12
), pp.
1046
1052
.
12.
Yang
,
B.
,
Li
,
Y.
,
Qin
,
Y.
,
Zhang
,
J.
,
Feng
,
B.
,
Liao
,
Z.
,
Xiao
,
S.
,
Yang
,
G.
, and
Zhu
,
T.
,
2020
, “
Fatigue Crack Growth Behaviour of Precipitate-Strengthened CuNi2Si Alloy Under Different Loading Modes
,”
Materials (Basel)
,
13
(
10
), p.
2228
.
13.
Tang
,
Y.
,
Zhu
,
G.
,
Kang
,
Y.
,
Yue
,
L.
, and
Jiao
,
X.
,
2016
, “
Effect of Microstructure on the Fatigue Crack Growth Behavior of Cu–Be–Co–Ni Alloy
,”
J. Alloys Compd.
,
663
(
5
), pp.
784
795
.
14.
Saadouki
,
B.
,
Elghorba
,
M.
,
Pelca
,
P. H.
,
Sapanathan
,
T.
, and
Rachik
,
M.
,
2017
, “
Characterization of Uniaxial Fatigue Behavior of Precipitate Strengthened Cu-Ni-Si Alloy (SICLANIC(TM))
,”
Frat. Integrità Strutt.
,
12
(
43
), pp.
133
145
.
15.
Yang
,
B.
,
Wu
,
M.
,
Li
,
X.
,
Zhang
,
J.
, and
Wang
,
H.
,
2018
, “
Effects of Cold Working and Corrosion on Fatigue Properties and Fracture Behaviors of Precipitate Strengthened Cu-Ni-Si Alloy
,”
Int. J. Fatigue
,
116
, pp.
118
127
.
16.
Brotzu
,
A.
,
Di Cocco
,
V.
,
Felli
,
F.
,
Iacoviello
,
F.
, and
Pilone
,
D.
,
2021
, “
Fatigue Crack Propagation in a C70250 Alloy
,”
Int. J. Fatigue
,
153
, p.
106499
.
17.
Park
,
J. H.
,
An
,
J. H.
,
Kim
,
Y. J.
,
Huh
,
Y. H.
, and
Lee
,
H. J.
,
2008
, “
Tensile and High Cycle Fatigue Test of Copper Thin Film
,”
Materialwiss. Werkstofftech.
,
39
(
2
), pp.
187
192
.
18.
Huh
,
Y. H.
,
Kim
,
D. J.
,
Lee
,
H. M.
,
Hong
,
S. G.
, and
Park
,
J. H.
,
2009
, “
Fatigue Limit of Copper Film
,”
Trans. Korean Soc. Mech. Eng. A
,
33
(
10
), pp.
1158
1162
.
19.
Sharma
,
A.
, and
Ahn
,
B.
,
2021
, “
Effect of Plating Current Density on the Ball-on-Disc Wear of Sn-Plated Ni Coatings on Cu Foils
,”
Coatings
,
11
(
1
), p.
56
.
20.
Sharma
,
A.
, and
Ahn
,
B.
,
2018
, “
Dry Sliding Wear Behavior of Sn and NiSn Overlays on Cu Connectors
,”
Tribol. Lett.
,
66
(
4
), pp.
1
12
.
21.
Pyttel
,
B.
,
Schwerdt
,
D.
, and
Berger
,
C.
,
2011
, “
Very High Cycle Fatigue—Is There a Fatigue Limit?
,”
Int. J. Fatigue
,
33
(
1
), pp.
49
58
.
22.
Grover
,
H. J.
,
1966
,
Fatigue of Aircraft Structure
,
Batelle Memorial Institute
. Prepared for Research and Technology, Naval Air Systems Command, Department of the Navy.
23.
Japan Copper and Brass Association
,
2018
, “Measuring Method for Fatigue Property of Copper and Copper Alloy Thin Sheets, Pates, and Strips,”
JCBA T308:2018, Japan Copper and Brass Association
.
24.
Mita
,
N.
,
Omiya
,
M.
, and
Watanabe
,
S.
,
2021
, “
Improvement of Experimental Device for High Cycle Fatigue Tests of Copper Alloy Strips and Characterizing Fatigue Properties
,”
Trans. JSME (in Japanese)
,
87
(
900
), pp.
21-00105
121-00105
.
25.
Weil
,
R.
,
1971
, “
Origins of Stress in Electrodeposits. Part 2
,”
Plating
,
58
(
1
), pp.
50
56
.
You do not currently have access to this content.