Abstract

Both understanding and simulation of the process of corrosion damage are crucial for the prediction of remaining service life of engineering structures, sound reliability analysis, and design for the purpose of enhancing the overall resistance of the material to corrosion damage. A coupled mechano-electrochemical peridynamic (PD) corrosion model was established by using the PD corrosion theory and the mechanochemical effect theory. The model is capable of simulating the occurrence of degradation caused by the conjoint and mutually interactive influences of mechano-electrochemical phenomena. Corrosion behavior of TC18 titanium alloy in EXCO solution under stress loads of 31% σ0.2, 47% σ0.2, and 62% σ0.2 was studied. The effect of tensile loads on the corrosion behavior of TC18 titanium alloy was examined by combining the micromorphology and electrochemical parameters to verify the dependence of reaction rate occurring at the anode on tensile stress. Results of this study shed light that as the stress level increases, the corrosion potential of TC18 titanium alloy shifts negatively, the corrosion current density increases and the corrosion intensifies. When the phase transition mechanism is satisfied, boundary movement occurs spontaneously. This model can safely be employed for complex geometric shapes and as a basis for studying crack propagation in environments that are favorable or conducive for inducing corrosion.

References

1.
Dai
,
N.
,
Zhang
,
L.
,
Zhang
,
J.
,
Chen
,
Q.
, and
Wu
,
M.
,
2016
, “
Corrosion Behavior of Selective Laser Melted Ti-6A1-4V Alloy in NaCl Solution
,”
Corros. Sci.
,
102
, pp.
484
489
.
2.
Qin
,
P.
,
Chen
,
Y.
,
Liu
,
Y.
,
Zhang
,
J.
,
Chen
,
L.
,
Li
,
Y.
,
Zhang
,
X.
,
Cao
,
C.
,
Sun
,
H.
, and
Zhang
,
L.
,
2019
, “
Resemblance in Corrosion Behavior of Selective Laser Melted and Traditional Monolithic β Ti-24Nb-4Zr-8Sn Alloy
,”
ACS Biomater. Sci. Eng.
,
5
(
2
), pp.
1141
1149
.
3.
Alves
,
V. A.
,
Reis
,
R. Q.
,
Santos
,
I. C. B.
,
Souza
,
D. G.
,
de F. Gonçalves
,
T.
,
Pereira-da-Silva
,
M. A.
,
Rossi
,
A.
, and
Da Silva
,
L. A.
,
2009
, “
In Situ Impedance Spectroscopy Study of the Electrochemical Corrosion of Ti and Ti-6Al-4V in Simulated Body Fluid at 25 °C and 37 °C
,”
Corros. Sci.
,
51
(
10
), pp.
2473
2482
.
4.
Donachie
,
M. J.
,
2006
, “Selection of Titanium Alloys for Design,”
Handbook of Materials Selection
,
M.
Katz
, ed.,
Wiley
,
New York
, pp.
221
255
.
5.
Nageswara Rao
,
K.
, and
Gururaja
,
U. V.
,
2008
, “
Manufacture of Titanium and Titanium Alloys at Midhani: An Overview
,”
Trans. Indian Inst. Met.
,
61
(
5
), pp.
349
354
.
6.
Chen
,
J. C. J.
, and
Tsai
,
W. T. W.
,
2011
, “
In Situ Corrosion Monitoring of Ti-6Al-4V Alloy in H2SO4/HCl Mixed Solution Using Electrochemical AFM
,”
Electrochim. Acta
,
56
(
4
), pp.
1746
1751
.
7.
Jamesh
,
M.
,
Kumar
,
S.
, and
Sankara Narayanan
,
T. S. N.
,
2012
, “
Effect of Thermal Oxidation on Corrosion Resistance of Commercially Pure Titanium in Acid Medium
,”
J. Mater. Eng. Perform.
,
21
(
6
), pp.
900
906
.
8.
Mohd Yusoff
,
M. F.
,
Abdul Kadir
,
M. R.
,
Iqbal
,
N.
,
Hassan
,
M. A.
, and
Hussain
,
R.
,
2014
, “
Dipcoating of Poly(ɛ-Caprolactone)/Hydroxyapatite Composite Coating on Ti6Al4V for Enhanced Corrosion Protection
,”
Surf. Coat. Technol.
,
245
, pp.
102
107
.
9.
Atapour
,
M.
,
Pilchak
,
A. L.
,
Frankel
,
G. S.
, and
Williams
,
J. C.
,
2011
, “
Corrosion Behavior of β Titanium Alloys for Biomedical Applications
,”
Mater. Sci. Eng., C
,
31
(
5
), pp.
885
891
.
10.
Mareci
,
D.
,
Ungareanu
,
G.
,
Aelenei
,
D. M.
, and
Mirza Rosca
,
J. C.
,
2007
, “
Electrochemical Characteristics of Titanium Based Biomaterials in Artificial Saliva
,”
Mater. Corros.
,
58
(
11
), pp.
848
856
.
11.
De Assis
,
S. L.
,
Wolynec
,
S.
, and
Costa
,
I.
,
2006
, “
Corrosion Characterization of Titanium Alloys by Electrochemical Techniques
,”
Electrochim. Acta
,
51
(
8
), pp.
1815
1819
.
12.
Choubey
,
A.
,
Balasubramaniam
,
R.
, and
Basu
,
B.
,
2004
, “
Effect of Replacement of V by Nb and Fe on the Electrochemical and Corrosion Behavior of Ti-6Al-4V in Simulated Physiological Environment
,”
J. Alloys Compd.
,
381
(
1
), pp.
288
294
.
13.
Cui
,
Z.
,
Wang
,
L.
,
Ni
,
H.
,
Hao
,
W.
,
Man
,
C.
,
Chen
,
S.
,
Wang
,
X.
,
Liu
,
Z.
, and
Li
,
X.
,
2017
, “
Influence of Temperature on the Electrochemical and Passivation Behavior of 2507 Super Duplex Stainless Steel in Simulated Desulfurized Flue Gas Condensates
,”
Corros. Sci.
,
118
, pp.
31
48
.
14.
Takasaki
,
S.
, and
Yamada
,
Y.
,
2007
, “
Effects of Temperature and Aggressive Anions on Corrosion of Carbon Steel in Potable Water
,”
Corros. Sci.
,
49
(
1
), pp.
240
247
.
15.
Zhang
,
X. L.
,
Jiang
,
Z. H.
,
Yao
,
Z. P.
,
Song
,
Y.
, and
Wu
,
Z. D.
,
2009
, “
Effects of Scan Rate on the Potentiodynamic Polarization Curve Obtained to Determine the Tafel Slopes and Corrosion Current Density
,”
Corros. Sci.
,
51
(
3
), pp.
581
587
.
16.
Hsu
,
R.
,
Yang
,
C.
,
Huang
,
C.
, and
Chen
,
Y.
,
2004
, “
Electrochemical Corrosion Properties of Ti-6Al-4V Implant Alloy in the Biological Environment
,”
Mater. Sci. Eng. A
,
380
(
1–2
), pp.
100
109
.
17.
Wang
,
Z. B.
,
Hu
,
H. X.
,
Zheng
,
Y. G.
,
Ke
,
W.
, and
Qiao
,
Y. X.
,
2016
, “
Comparison of the Corrosion Behavior of Titanium and Its Alloys in Fluoride-Containing Sulfuric Acid
,”
Corros. Sci.
,
103
, pp.
50
65
.
18.
Geetha
,
M.
,
Mudali
,
U. K.
,
Gogia
,
A. K.
,
Asokamani
,
R.
, and
Raj
,
B.
,
2004
, “
Influence of Microstructure and Alloying Elements on Corrosion Behavior of Ti-13Nb-13Zr Alloy
,”
Corros. Sci.
,
46
(
4
), pp.
877
892
.
19.
Brossia
,
C. S.
, and
Cragnolino
,
G. A.
,
2004
, “
Effect of Palladium on the Corrosion Behavior of Titanium
,”
Corros. Sci.
,
46
(
7
), pp.
1693
1711
.
20.
Pham
,
M. T.
,
Zyganow
,
I.
,
Matz
,
W.
,
Reuther
,
H.
,
Oswald
,
S.
,
Richter
,
E.
, and
Wieser
,
E.
,
1997
, “
Corrosion Behavior and Microstructure of Titanium Implanted With α and β Stabilizing Elements
,”
Thin Solid Films
,
310
(
1
), pp.
251
259
.
21.
De Meo
,
D.
,
Diyaroglu
,
C.
,
Zhu
,
N.
,
Oterkus
,
E.
,
Siddiq
,
M.
,
Soares
,
C.
, and
Shenoi
,
R.
,
2015
, “Multiphysics Modelling of Stress Corrosion Cracking by Using Peridynamics,”
Analysis and Design of Marine Structures V
,
Taylor & Francis Group
,
London
, pp.
499
504
.
22.
De Meo
,
D.
,
Diyaroglu
,
C.
,
Zhu
,
N.
,
Oterkus
,
E.
, and
Siddiq
,
M. A.
,
2016
, “
Modelling of Stress-Corrosion Cracking by Using Peridynamics
,”
Int. J. Hydrogen Energy
,
41
(
15
), pp.
6593
6609
.
23.
Jafarzadeh
,
S.
,
Chen
,
Z.
,
Li
,
S.
, and
Bobaru
,
F.
,
2019
, “
A Peridynamic Mechano-Chemical Damage Model for Stress-Assisted Corrosion
,”
Electrochim. Acta
,
323
, p.
134795
.
24.
Xu
,
L. Y.
, and
Cheng
,
Y. F.
,
2012
, “
An Experimental Investigation of Corrosion of X100 Pipeline Steel Under Uniaxial Elastic Stress in a Near-Neutral pH Solution
,”
Corros. Sci.
,
59
, pp.
103
109
.
25.
Xu
,
L. Y.
, and
Cheng
,
Y. F.
,
2012
, “
Corrosion of X100 Pipeline Steel Under Plastic Strain in a Neutral pH Bicarbonate Solution
,”
Corros. Sci.
,
64
, pp.
145
152
.
26.
Zheng
,
Y.
,
Li
,
Y.
,
Chen
,
J.
, and
Zou
,
Z.
,
2015
, “
Effects of Tensile and Compressive Deformation on Corrosion Behaviour of a Mg–Zn Alloy
,”
Corros. Sci.
,
90
(
14
), pp.
445
450
.
27.
Bao
,
M.
,
Ren
,
C.
,
Lei
,
M.
,
Wang
,
X.
,
Singh
,
A.
, and
Guo
,
X.
,
2016
, “
Electrochemical Behavior of Tensile Stressed P110 Steel in CO2 Environment
,”
Corros. Sci.
,
112
(
14
), pp.
585
595
.
28.
Kim
,
S. J.
,
2017
, “
Effect of the Elastic Tensile Load on the Electrochemical Corrosion Behavior and Diffusible Hydrogen Content of Ferritic Steel in Acidic Environment
,”
Int. J. Hydrogen Energy
,
40
(
30
), pp.
19367
19375
.
29.
Kuwazuru
,
O.
,
Ode
,
K.
,
Yamada
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
,
2018
, “
Experimental and Boundary Element Method Study on the Effect of Stress on the Polarization Curve of Cast Aluminum Alloy in Sodium Chloride Solution
,”
Corros. Sci.
,
132
, pp.
136
145
.
30.
Zhao
,
XH.
,
Feng
,
Y
,
Tang
,
S
, and
Zhang
,
J
,
2018
, “
Electrochemical Corrosion Behavior of 15Cr-6Ni-2Mo Stainless Steel With/Without Stress Under the Coexistence of CO2 and H2S
,”
Int. J. Electrochem. Sci.
,
13
(
7
), pp.
6296
6309
.
31.
Wu
,
G.
, and
Singh
,
P. M.
,
2018
, “
Effect of Elastic and Plastic Strain on General Corrosion and Metastable Pitting of Steels
,”
NACE—International Corrosion Conference Series.
32.
Xia
,
D.
,
Wang
,
J.
,
Qin
,
Z.
,
Gao
,
Z.
,
Wu
,
Z.
,
Wang
,
J.
,
Yang
,
L.
,
Hu
,
W.
, and
Luo
,
J.
,
2019
, “
Sulfur Induced Corrosion (SiC) Mechanism of Steam Generator (SG) Tubing at Micro Scale: A Critical Review
,”
Mater. Chem. Phys.
,
233
, pp.
133
140
.
33.
Wang
,
X.
,
Tang
,
X.
,
Wang
,
L.
,
Wang
,
C.
, and
Zhou
,
W.
,
2014
, “
Synergistic Effect of Stray Current and Stress on Corrosion of API X65 Steel
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
474
480
.
34.
Wu
,
T.
,
Yan
,
M.
,
Xu
,
J.
,
Liu
,
Y.
,
Sun
,
C.
, and
Ke
,
W.
,
2016
, “
Mechano-Chemical Effect of Pipeline Steel in Microbiological Corrosion
,”
Corros. Sci.
,
108
, pp.
160
168
.
35.
Yang
,
H.-Q.
,
Zhang
,
Q.
,
Tu
,
S.-S.
,
Wang
,
Y.
,
Li
,
Y.-M.
, and
Huang
,
Y.
,
2016
, “
Effects of Inhomogeneous Elastic Stress on Corrosion Behaviour of Q235 Steel in 3.5% NaCl Solution Using a Novel Multi-Channel Electrode Technique
,”
Corros. Sci.
,
110
(
3
), pp.
1
14
.
36.
Gutman
,
E. M.
,
1994
,
Mechanochemistry of Solid Surfaces
,
World Scientific
,
Singapore
, p.
322
.
37.
Van der Weeën
,
P.
,
Zimer
,
A. M.
,
Pereira
,
E. C.
,
Mascaro
,
L. H.
,
Bruno
,
O. M.
, and
De Baets
,
B.
,
2014
, “
Modeling Pitting Corrosion by Means of a 3D Discrete Stochastic Model
,”
Corros. Sci.
,
82
, pp.
133
144
.
38.
Wang
,
H.
, and
Han
,
E.
,
2016
, “
Computational Simulation of Corrosion Pit Interactions Under Mechanochemical Effects Using a Cellular Automaton/Finite Element Model
,”
Corros. Sci.
,
103
(
0
), pp.
305
311
.
39.
Fatoba
,
O. O.
,
Leiva-Garcia
,
R.
,
Lishchuk
,
S. V.
,
Larrosa
,
N. O.
, and
Akid
,
R.
,
2018
, “
Simulation of Stress-Assisted Localised Corrosion Using a Cellular Automaton Finite Element Approach
,”
Corros. Sci.
,
137
, pp.
83
97
.
40.
Lin
,
C.
,
Ruan
,
H.
, and
Shi
,
S.-Q.
,
2019
, “
Phase Field Study of Mechanico-Electrochemical Corrosion
,”
Electrochim. Acta
,
310
, pp.
240
255
.
41.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.
42.
De Meo
,
D.
,
Russo
,
L.
, and
Oterkus
,
E.
,
2017
, “
Modeling of the Onset, Propagation, and Interaction of Multiple Cracks Generated From Corrosion Pits by Using Peridynamics
,”
ASME J. Eng. Mater. Technol.
,
139
(
4
), p.
041001
.
43.
Ha
,
Y. D.
, and
Bobaru
,
F.
,
2010
, “
Studies of Dynamic Crack Propagation and Crack Branching With Peridynamics
,”
Int. J. Fract.
,
162
(
1–2
), pp.
229
244
.
44.
Bobaru
,
F.
, and
Zhang
,
G.
,
2015
, “
Why Do Cracks Branch? A Peridynamic Investigation of Dynamic Brittle Fracture
,”
Int. J. Fract.
,
196
(
1–2
), pp.
59
98
.
45.
Li
,
M.
,
Lu
,
W.
,
Oterkus
,
E.
, and
Oterkus
,
S.
,
2020
, “
Thermally-Induced Fracture Analysis of Polycrystalline Materials by Using Peridynamics
,”
Eng. Anal. Boundary Elem.
,
117
, pp.
167
187
.
46.
Bobaru
,
F.
, and
Duangpanya
,
M.
,
2010
, “
The Peridynamic Formulation for Transient Heat Conduction
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4047
4059
.
47.
Bobaru
,
F.
, and
Duangpanya
,
M.
,
2012
, “
A Peridynamic Formulation for Transient Heat Conduction in Bodies With Evolving Discontinuities
,”
J. Comput. Phys.
,
231
(
7
), pp.
2764
2785
.
48.
De Meo
,
D.
, and
Oterkus
,
E.
,
2017
, “
Finite Element Implementation of a Peridynamic Pitting Corrosion Damage Model
,”
Ocean Eng.
,
135
, pp.
76
83
.
49.
Oterkus
,
S.
,
Madenci
,
E.
,
Oterkus
,
E.
,
Hwang
,
Y.
,
Bae
,
J.
, and
Han
,
S.
,
2014
, “
Hygro-Thermo-Mechanical Analysis and Failure Prediction in Electronic Packages by Using Peridynamics
,”
Proceedings of the 2014 IEEE 64th Electronic Components and Technology Conference (ECTC)
,
Orlando, FL
,
May 27–30
, pp.
973
982
.
50.
Wang
,
H.
,
Oterkus
,
E.
, and
Oterkus
,
S.
,
2018
, “
Predicting Fracture Evolution During Lithiation Process Using Peridynamics
,”
Eng. Fract. Mech.
,
192
, pp.
176
191
.
51.
Chen
,
Z.
, and
Bobaru
,
F.
,
2015
, “
Peridynamic Modeling of Pitting Corrosion Damage
,”
J. Mech. Phys. Solids
,
78
, pp.
352
381
.
52.
Chen
,
Z.
,
Zhang
,
G.
, and
Bobaru
,
F.
,
2016
, “
The Influence of Passive Film Damage on Pitting Corrosion
,”
J. Electrochem. Soc.
,
163
(
2
), pp.
C19
C24
.
53.
Jafarzadeh
,
S.
,
Bobaru
,
F.
, and
Chen
,
Z.
,
2018
, “
Peridynamic Modeling of Repassivation in Pitting Corrosion of Stainless Steel
,”
Corrosion
,
74
(
4
), pp.
393
414
.
54.
Jafarzadeh
,
S.
,
Chen
,
Z.
, and
Bobaru
,
F.
,
2018
, “
Peridynamic Modeling of Intergranular Corrosion Damage
,”
J. Electrochem. Soc.
,
165
(
7
), pp.
C362
C374
.
55.
Jafarzadeh
,
S.
,
Chen
,
Z.
, and
Zhao
,
J.
,
2019
, “
Pitting, Lacy Covers, and Pit Merger in Stainless Steel: 3D Peridynamic Models
,”
Corros. Sci.
,
150
, pp.
17
31
.
56.
Hermann
,
A.
,
Shojaei
,
A.
,
Steglich
,
D.
,
Ouml
,
H.
,
Che
,
D.
,
Zeller-Plumhoff
,
B.
, and
Cyron
,
C. J.
,
2022
, “
Combining Peridynamic and Finite Element Simulations to Capture the Corrosion of Degradable Bone Implants and to Predict Their Residual Strength
,”
Int. J. Mech. Sci.
,
220
, p.
139512
.
57.
Zhao
,
J.
,
Jafarzadeh
,
S.
,
Rahmani
,
M.
,
Chen
,
Z.
,
Kim
,
Y.
, and
Bobaru
,
F.
,
2021
, “
A Peridynamic Model for Galvanic Corrosion and Fracture
,”
Electrochim. Acta
,
391
, p.
138968
.
58.
Jafarzadeh
,
S.
,
Zhao
,
J.
,
Shakouri
,
M.
, and
Bobaru
,
F.
,
2022
, “
A Peridynamic Model for Crevice Corrosion Damage
,”
Electrochim. Acta
,
401
, p.
139512
.
59.
Chen
,
Z.
,
Jafarzadeh
,
S.
,
Zhao
,
J.
, and
Bobaru
,
F.
,
2021
, “
A Coupled Mechano-Chemical Peridynamic Model for pit-to-Crack Transition in Stress-Corrosion Cracking
,”
J. Mech. Phys. Solids
,
146
, p.
104203
.
60.
Fan
,
S.
,
Tian
,
C.
,
Liu
,
Y.
, and
Chen
,
Z.
,
2022
, “
Surface Stability in Stress-Assisted Corrosion: A Peridynamic Investigation
,”
Electrochim. Acta
,
423
, p.
140570
.
61.
Karpenko
,
O.
,
Oterkus
,
S.
, and
Oterkus
,
E.
,
2022
, “
Titanium Alloy Corrosion Fatigue Crack Growth Rates Prediction: Peridynamics Based Numerical Approach
,”
Int. J. Fatigue
,
162
, p.
107023
.
62.
Zhang
,
W.
,
Lv
,
S.-L.
,
Lv
,
Y.
,
Gao
,
X.
, and
Srivatsan
,
T. S.
,
2021
, “
Corrosion Behavior of an Anti-Icing Coating on an Aluminum Alloy: An Experimental and Numerical Study
,”
ASME J. Eng. Mater. Technol.
,
143
(
3
), p.
031003
.
63.
Korb
,
L. J.
, and
Olson
,
D. L.
,
1996
,
Corrosion
,
ASM International
,
Metal Parks, OH
.
64.
Bard
,
A. J.
, and
Faulkner
,
L. R.
,
1980
,
Electrochemical Methods: Fundamentals and Applications
,
Wiley
, p.
718
.
65.
Song
,
W.
,
Martin
,
H. J.
,
Hicks
,
A.
,
Seely
,
D.
,
Walton
,
C. A.
,
Lawrimore
W. B.
, II
,
Wang
,
P. T.
, and
Horstemeyer
,
M. F.
,
2014
, “
Corrosion Behaviour of Extruded AM30 Magnesium Alloy Under Salt-Spray and Immersion Environments
,”
Corros. Sci.
,
78
, pp.
353
368
.
66.
Malki
,
B.
, and
Baroux
,
B.
,
2005
, “
Computer Simulation of the Corrosion Pit Growth
,”
Corros. Sci.
,
47
(
1
), pp.
171
182
.
67.
Scheiner
,
S.
, and
Hellmich
,
C.
,
2007
, “
Stable Pitting Corrosion of Stainless Steel as Diffusion-Controlled Dissolution Process With a Sharp Moving Electrode Boundary
,”
Corros. Sci.
,
49
(
2
), pp.
319
346
.
68.
Onishi
,
Y.
,
Takiyasu
,
J.
,
Amaya
,
K.
,
Yakuwa
,
H.
, and
Hayabusa
,
K.
,
2012
, “
Numerical Method for Time-Dependent Localized Corrosion Analysis with Moving Boundaries by Combining the Finite Volume Method and Voxel Method
,”
Corros. Sci.
,
63
, pp.
210
224
.
69.
Duddu
,
R.
,
2014
, “
Numerical Modeling of Corrosion Pit Propagation Using the Combined Extended Finite Element and Level Set Method
,”
Comput. Mech.
,
54
(
3
), pp.
613
627
.
70.
Silling
,
S. A.
, and
Askari
,
E.
,
2005
, “
A Meshfree Method Based on the Peridynamic Model of Solid Mechanics
,”
Comput. Struct.
,
83
(
17–18
), pp.
1526
1535
.
71.
Moreto
,
J. A.
,
Marino
,
C. E. B.
,
Bose Filho
,
W. W.
,
Rocha
,
L. A.
, and
Fernandes
,
J. C. S.
,
2014
, “
SVET, SKP and EIS Study of the Corrosion Behaviour of High Strength Al and Al–Li Alloys Used in Aircraft Fabrication
,”
Corros. Sci.
,
84
, pp.
30
41
.
You do not currently have access to this content.