Abstract

An equivalent damage model was established to study the fatigue damage behavior of steel–aluminum friction stir welding (FSW) joints. Internal defects of friction stir welding joint under various cyclic loading stages were observed by X-ray microcomputed tomography (X-CT). For the characteristics of defects of the steel–aluminum FSW joints, a simplified method of defects considering key parameters is proposed, and then, the defect model is established. The FSW joint model was established based on the steel–aluminum boundary contour identified by using image processing techniques. Based on the defect model and the FSW joint model, the equivalent damage model was developed. The equivalent damage model was subjected to finite element analysis and compared with the test using strain amplitude as the damage variable. The equivalent damage model can be used to assess fatigue damage in steel–aluminum FSW joints, which provides some theoretical basis for fatigue life prediction.

References

1.
Safeen
,
M. W.
, and
Spena
,
P. R.
,
2019
, “
Main Issues in Quality of Friction Stir Welding Joints of Aluminum Alloy and Steel Sheets
,”
Metals
,
9
(
5
), p.
610
.
2.
Zandsalimi
,
S.
,
Heidarzadeh
,
A.
, and
Saeid
,
T.
,
2019
, “
Dissimilar Friction-Stir Welding of 430 Stainless Steel and 6061 Aluminum Alloy: Microstructure and Mechanical Properties of the Joints
,”
Proc. Inst. Mech. Eng. Pt. L-J. Mater.: Des. Appl.
,
233
(
9
), pp.
1791
1801
.
3.
Schjodt-Thomsen
,
J.
, and
Andreasen
,
J. H.
,
2018
, “
Low Cycle Fatigue Behaviour of Welded T-Joints in High Strength Steel
,”
Eng. Fail. Anal.
,
93
, pp.
38
43
.
4.
Uematsu
,
Y.
,
Kakiuchi
,
T.
,
Ogawa
,
D.
, and
Hashiba
,
K.
,
2020
, “
Fatigue Crack Propagation Near the Interface Between Al and Steel in Dissimilar Al/Steel Friction Stir Welds
,”
Int. J. Fatigue
,
138
, p.
105706
.
5.
Vishnuvardhan
,
S.
,
Raghava
,
G.
,
Saravanan
,
M.
, and
Gandhi
,
P.
,
2016
, “
Fatigue Life Evaluation of Fillet Welded Cruciform Joints With Load-Carrying Welds
,”
Trans. Indian Inst. Met.
,
69
(
2
), pp.
585
589
.
6.
Cui
,
C.
,
Xu
,
Y.-L.
, and
Zhang
,
Q.-H.
,
2021
, “
Multiscale Fatigue Damage Evolution in Orthotropic Steel Deck of Cable-Stayed Bridges
,”
Eng. Struct.
,
237
, p.
112144
.
7.
Remes
,
H.
,
Gallo
,
P.
,
Jelovica
,
J.
,
Romanoff
,
J.
, and
Lehto
,
P.
,
2020
, “
Fatigue Strength Modelling of High-Performing Welded Joints
,”
Int. J. Fatigue
,
135
, p.
105555
.
8.
Yuan
,
D.
,
Cui
,
C.
,
Zhang
,
Q.
,
Li
,
Z.
, and
Ye
,
Z.
,
2022
, “
Fatigue Damage Evaluation of Welded Joints in Steel Bridge Based on Meso-Damage Mechanics
,”
Int. J. Fatigue
,
161
, p.
106898
.
9.
Wu
,
S. C.
,
Yu
,
C.
,
Zhang
,
W. H.
,
Fu
,
Y. N.
, and
Helfen
,
L.
,
2015
, “
Porosity Induced Fatigue Damage of Laser Welded 7075-T6 Joints Investigated via Synchrotron X-ray Microtomography
,”
Sci. Technol. Weld. Join.
,
20
(
1
), pp.
11
19
.
10.
Mahto
,
R. P.
,
Kumar
,
R.
, and
Pal
,
S. K.
,
2020
, “
Characterizations of Weld Defects, Intermetallic Compounds and Mechanical Properties of Friction Stir Lap Welded Dissimilar Alloys
,”
Mater. Charact.
,
160
, p.
110115
.
11.
Dezecot
,
S.
,
Maurel
,
V.
,
Buffiere
,
J.-Y.
,
Szmytka
,
F.
, and
Koster
,
A.
,
2017
, “
3D Characterization and Modeling of Low Cycle Fatigue Damage Mechanisms at High Temperature in a Cast Aluminum Alloy
,”
Acta Mater.
,
123
(
16
), pp.
24
34
.
12.
Li
,
Z.
,
Limodin
,
N.
,
Tandjaoui
,
A.
,
Quaegebeur
,
P.
,
Witz
,
J.-F.
, and
Balloy
,
D.
,
2020
, “
In-Situ 3D Characterization of Tensile Damage Mechanisms in A319 Aluminium Alloy Using X-Ray Tomography and Digital Volume Correlation
,”
Mater. Sci. Eng. A
,
794
, p.
139920
.
13.
Xu
,
S.
,
Chen
,
H.
,
Yang
,
Y. L.
, and
Gao
,
K.
,
2020
, “
Fatigue Damage of Aluminum Alloy Spot-Welded Joint Based on Defects Reconstruction
,”
ASME J. Eng. Mater. Technol.
,
142
(
2
), p.
021001
.
14.
Li
,
P.
,
Lee
,
P. D.
,
Maijer
,
D. M.
, and
Lindley
,
T. C.
,
2009
, “
Quantification of the Interaction Within Defect Populations on Fatigue Behavior in an Aluminum Alloy
,”
Acta Mater.
,
57
(
12
), pp.
3539
3548
.
15.
Bao
,
Y. Q.
,
Yang
,
Y. L.
,
Chen
,
H.
,
Li
,
Y. F.
,
Shen
,
J.
, and
Yang
,
S. W.
,
2019
, “
Multiscale Damage Evolution Analysis of Aluminum Alloy Based on Defect Visualization
,”
Appl. Sci.-Basel
,
9
(
23
), p.
5251
.
16.
Ben Ahmed
,
A.
,
Nasr
,
A.
, and
Fathallah
,
R.
,
2017
, “
Probabilistic High Cycle Fatigue Behavior Prediction of A356-T6 Alloy Considering the SDAS Dispersion
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9–12
), pp.
3275
3288
.
17.
Gao
,
Y. X.
,
Yi
,
J. Z.
,
Lee
,
P. D.
, and
Lindley
,
T. C.
,
2004
, “
A Micro-Cell Model of the Effect of Microstructure and Defects on Fatigue Resistance in Cast Aluminum Alloys
,”
Acta Mater.
,
52
(
19
), pp.
5435
5449
.
18.
Nadot
,
Y.
, and
Billaudeau
,
T.
,
2006
, “
Multiaxial Fatigue Limit Criterion for Defective Materials
,”
Eng. Fract. Mech.
,
73
(
1
), pp.
112
133
.
19.
Zhang
,
W.
,
Jing
,
H.
,
Xu
,
L.
,
Zhao
,
L.
,
Han
,
Y.
, and
Li
,
C.
,
2015
, “
Numerical Investigation of Creep Crack Initiation in P92 Steel Pipes With Embedded Spherical Defects Under Internal Pressure at 650 Degrees C
,”
Eng. Fract. Mech.
,
140
, pp.
40
55
.
20.
Le
,
V. D.
,
Saintier
,
N.
,
Morel
,
F.
,
Bellett
,
D.
, and
Osmond
,
P.
,
2018
, “
Investigation of the Effect of Porosity on the High Cycle Fatigue Behaviour of Cast Al-Si Alloy by X-Ray Micro-Tomography
,”
Int. J. Fatigue
,
106
, pp.
24
37
.
21.
Nadot
,
Y.
,
Nadot-Martin
,
C.
,
Kan
,
W. H.
,
Boufadene
,
S.
,
Foley
,
M.
,
Cairney
,
J.
,
Proust
,
G.
, and
Ridosz
,
L.
,
2020
, “
Predicting the Fatigue Life of an AlSi10Mg Alloy Manufactured via Laser Powder Bed Fusion by Using Data From Computed Tomography
,”
Addit. Manuf.
,
32
, p.
100899
.
22.
Chen
,
H.
,
Yang
,
Y. L.
,
Cao
,
S. L.
,
Gao
,
K.
,
Xu
,
S.
,
Li
,
Y. F.
, and
Zhang
,
R. P.
,
2021
, “
Fatigue Life Prediction of Aluminum Alloy 6061 Based on Defects Analysis
,”
Int. J. Fatigue
,
147
, p.
106189
.
23.
Taxer
,
T.
,
Schwarz
,
C.
,
Smarsly
,
W.
, and
Werner
,
E.
,
2013
, “
A Finite Element Approach to Study the Influence of Cast Pores on the Mechanical Properties of the Ni-Base Alloy MAR-M247
,”
Mater. Sci. Eng. A
,
575
, pp.
144
151
.
24.
Wu
,
Z. K.
,
Wu
,
S. C.
,
Bao
,
J. G.
,
Qian
,
W. J.
,
Karabal
,
S.
,
Sun
,
W.
, and
Withers
,
P. J.
,
2021
, “
The Effect of Defect Population on the Anisotropic Fatigue Resistance of AlSi10Mg Alloy Fabricated by Laser Powder Bed Fusion
,”
Int. J. Fatigue
,
151
, p.
106317
.
25.
Tammas-Williams
,
S.
,
Withers
,
P. J.
,
Todd
,
I.
, and
Prangnell
,
P. B.
,
2017
, “
The Influence of Porosity on Fatigue Crack Initiation in Additively Manufactured Titanium Components
,”
Sci. Rep.
,
7
(
1
), p.
7308
.
26.
Peng
,
X.
,
Wu
,
S.
,
Qian
,
W.
,
Bao
,
J.
,
Hu
,
Y.
,
Zhan
,
Z.
,
Guo
,
G.
, and
Withers
,
P. J.
,
2022
, “
The Potency of Defects on Fatigue of Additively Manufactured Metals
,”
Int. J. Mech. Sci.
,
221
, p.
107185
.
27.
Romano
,
S.
,
Brandao
,
A.
,
Gumpinger
,
J.
,
Gschweitl
,
M.
, and
Beretta
,
S.
,
2017
, “
Qualification of AM Parts: Extreme Value Statistics Applied to Tomographic Measurements
,”
Mater. Des.
,
131
, pp.
32
48
.
28.
Evdokimov
,
A.
,
Springer
,
K.
,
Doynov
,
N.
,
Ossenbrink
,
R.
, and
Michailov
,
V.
,
2017
, “
Heat Source Model for Laser Beam Welding of Steel-Aluminum Lap Joints
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
709
716
.
29.
Hynes
,
N. R. J.
, and
Velu
,
P. S.
,
2017
, “
Simulation of Friction Welding of Alumina and Steel With Aluminum Interlayer
,”
Int. J. Adv. Manuf. Technol.
,
93
(
1–4
), pp.
121
127
.
30.
Kimthong
,
P.
,
Wattanapornphan
,
P.
,
Phongphisutthinan
,
C.
, and
Uthaisangsuk
,
V.
,
2021
, “
Experimental Investigations and FE Modeling Considering Microstructural Inhomogeneity of Laser Welded Steel-Aluminum Joints
,”
Arch. Civ. Mech. Eng.
,
22
(
1
), pp.
1
31
.
31.
Gao
,
K.
,
Zhang
,
S.
,
Mondal
,
M.
,
Basak
,
S.
,
Hong
,
S.-T.
, and
Shim
,
H.
,
2021
, “
Friction Stir Spot Butt Welding of Dissimilar S45C Steel and 6061-T6 Aluminum Alloy
,”
Metals
,
11
(
8
), p.
1252
.
32.
Arghavani
,
M. R.
,
Movahedi
,
M.
, and
Kokabi
,
A. H.
,
2016
, “
Role of Zinc Layer in Resistance Spot Welding of Aluminium to Steel
,”
Mater. Des.
,
102
, pp.
106
114
.
33.
Suzuki
,
S.
, and
Abe
,
K.
,
1985
, “
Topological Structural Analysis of Digitized Binary Images by Border Following
,”
Comput. Vis. Graph. Image Process.
,
30
(
1
), pp.
32
46
.
34.
Douglas
,
D. H.
, and
Peucker
,
T. K.
,
1973
, “
Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature
,”
Cartographica: Int. J. Geogr. Inf. Geovis.
,
10
(
2
), pp.
112
122
.
35.
Liu
,
X.-G.
,
Guo
,
H.-D.
,
Wang
,
B.-Z.
,
Li
,
J.-W.
, and
Wu
,
B.
,
2011
, “
Study on High Cycle Fatigue Fractal Damage Model of TC11 Alloy Welded Joint
,”
Hangkong Dongli Xuebao/J. Aerosp. Power
,
26
(
2
), pp.
355
361
.
You do not currently have access to this content.