Abstract

The effects of changing the strain rate regime from quasi-static to medium on hydrogen susceptibility of aluminum (Al) 7075 were investigated using tensile tests. Strain rates were selected as 1 s−1 and 10−3 s−1 and tensile tests were conducted on both hydrogen uncharged and hydrogen charged specimens at room temperature. Electrochemical hydrogen charging method was utilized and the diffusion length of hydrogen inside Al 7075 was modeled. Material characterizations were carried out by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) and microstructural observations of hydrogen uncharged and hydrogen charged specimens were performed by scanning electron microscope (SEM). As opposed to earlier studies, hydrogen embrittlement (HE) was more pronounced at high strain rate cases. Moreover, hydrogen enhanced localized plasticity (HELP) was the more dominant hydrogen embrittlement mechanism at slower strain rate but coexistence of hydrogen enhanced localized plasticity and hydrogen enhanced decohesion was observed at a medium strain rate. Overall, the current findings shed light on the complicated hydrogen embrittlement behavior of Al 7075 and constitute an efficient guideline for the usage of Al 7075 that can be subject to different strain rate loadings in service.

References

1.
Ashkenazi
,
D.
,
2019
, “
How Aluminum Changed the World: A Metallurgical Revolution Through Technological and Cultural Perspectives
,”
Technol. Forecast. Soc. Change
,
143
, pp.
101
113
.
2.
Han
,
N. M.
,
Zhang
,
X. M.
,
Liu
,
S. D.
,
He
,
D. G.
, and
Zhang
,
R.
,
2011
, “
Effect of Solution Treatment on the Strength and Fracture Toughness of Aluminum Alloy 7050
,”
J. Alloys Compd.
,
509
(
10
), pp.
4138
4145
.
3.
B
,
B.
,
2018
, “
Determination of Material Response and Optimization of Johnson-Cook Damage Parameters of Aluminium 7075 Alloy
,”
Selcuk Univ. J. Eng. Sci. Technol.
,
6
(
2
), pp.
343
354
.
4.
Sun
,
Q.
,
Yang
,
M.
,
Jiang
,
Y.
,
Lei
,
L.
, and
Zhang
,
Y.
,
2022
, “
Achieving Excellent Corrosion Resistance Properties of 7075 Al Alloy Via Ultrasonic Surface Rolling Treatment
,”
J. Alloys Compd.
,
911
, p.
165009
.
5.
Kumar
,
P. V.
,
Reddy
,
G. M.
, and
Rao
,
K. S.
,
2015
, “
Microstructure, Mechanical and Corrosion Behavior of High Strength AA7075 Aluminium Alloy Friction Stir Welds—Effect of Post Weld Heat Treatment
,”
Def. Technol.
,
11
(
4
), pp.
362
369
.
6.
Takano
,
N.
,
2008
, “
Hydrogen Diffusion and Embrittlement in 7075 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
483–484
(
1–2C
), pp.
336
339
.
7.
Baradeswaran
,
A.
, and
Perumal
,
A. E.
,
2014
, “
Wear and Mechanical Characteristics of Al 7075/Graphite Composites
,”
Compos. B Eng.
,
56
, pp.
472
476
.
8.
Tsurudome
,
M.
,
Yamada
,
H.
,
Ogasawara
,
N.
, and
Horikawa
,
K.
,
2014
, “
Effect of Pre-Fatigue Deformation Under Humid Environment on Impact Tensile Properties in 7075 Aluminum Alloys
,”
Appl. Mech. Mater.
,
566
, pp.
128
133
.
9.
Ogawa
,
Y.
,
Kim
,
D.
,
Matsunaga
,
H.
, and
Matsuoka
,
S.
,
2018
, “
Evaluation of the Compatibility of High-Strength Aluminum Alloy 7075-T6 to High-Pressure Gaseous Hydrogen Environments
,”
Pressure Vessels and Piping Conference
,
Prague, Czech Republic
,
July 15–20
, p.
V06BT06A030
.
10.
Bal
,
B.
,
Okdem
,
B.
,
Bayram
,
F. C.
, and
Aydin
,
M.
,
2020
, “
A Detailed Investigation of the Effect of Hydrogen on the Mechanical Response and Microstructure of Al 7075 Alloy Under Medium Strain Rate Impact Loading
,”
Int. J. Hydrogen Energy
,
45
(
46
), pp.
25509
25522
.
11.
Dwivedi
,
S. K.
, and
Vishwakarma
,
M.
,
2018
, “
Hydrogen Embrittlement in Different Materials: A Review
,”
Int. J. Hydrogen Energy
,
43
(
46
), pp.
21603
21616
.
12.
Dwivedi
,
S. K.
, and
Vishwakarma
,
M.
,
2019
, “
Effect of Hydrogen in Advanced High Strength Steel Materials
,”
Int. J. Hydrogen Energy
,
44
(
51
), pp.
28007
28030
.
13.
Xu
,
P.
,
Li
,
C.
,
Li
,
W.
,
Zhu
,
M.
,
Li
,
W.
, and
Zhang
,
K.
,
2021
, “
Effect of Microstructure on Hydrogen Embrittlement Susceptibility in Quenching-Partitioning-Tempering Steel
,”
Mater. Sci. Eng. A
,
831
, p.
142046
.
14.
Pradhan
,
A.
,
Vishwakarma
,
M.
, and
Dwivedi
,
S. K.
,
2019
, “
A Review: The Impact of Hydrogen Embrittlement on the Fatigue Strength of High Strength Steel
,”
Mater. Today Proc.
,
26
, pp.
3015
3019
.
15.
Rajabipour
,
A.
, and
Melchers
,
R. E.
,
2018
, “
Service Life of Corrosion Pitted Pipes Subject to Fatigue Loading and Hydrogen Embrittlement
,”
Int. J. Hydrogen Energy
,
43
(
17
), pp.
8440
8450
.
16.
Djukic
,
M. B.
,
Bakic
,
G. M.
,
Sijacki Zeravcic
,
V.
,
Sedmak
,
A.
, and
Rajicic
,
B.
,
2019
, “
The Synergistic Action and Interplay of Hydrogen Embrittlement Mechanisms in Steels and Iron: Localized Plasticity and Decohesion
,”
Eng. Fract. Mech.
,
216
, p.
106528
.
17.
López Freixes
,
M.
,
Zhou
,
X.
,
Zhao
,
H.
,
Godin
,
H.
,
Peguet
,
L.
,
Warner
,
T.
, and
Gault
,
B.
,
2022
, “
Revisiting Stress-Corrosion Cracking and Hydrogen Embrittlement in 7xxx-Al Alloys at the Near-Atomic-Scale
,”
Nat. Commun.
,
13
(
1
), pp.
1
9
.
18.
Djukic
,
M. B.
,
Sijacki Zeravcic
,
V.
,
Bakic
,
G. M.
,
Sedmak
,
A.
, and
Rajicic
,
B.
,
2015
, “
Hydrogen Damage of Steels: A Case Study and Hydrogen Embrittlement Model
,”
Eng. Fail. Anal.
,
58
, pp.
485
498
.
19.
Koyama
,
M.
,
Tasan
,
C. C.
,
Akiyama
,
E.
,
Tsuzaki
,
K.
, and
Raabe
,
D.
,
2014
, “
Hydrogen-Assisted Decohesion and Localized Plasticity in Dual-Phase Steel
,”
Acta Mater.
,
70
, pp.
174
187
.
20.
Popov
,
B. N.
,
Lee
,
J. W.
, and
Djukic
,
M. B.
,
2018
, “Hydrogen Permeation and Hydrogen-Induced Cracking,”
Handbook of Environmental Degradation of Materials
,
M.
Kutz
, ed., 3rd ed.,
Elsevier Inc.
, pp.
133
162
.
21.
Bal
,
B.
,
Çetin
,
B.
,
Bayram
,
F. C.
, and
Billur
,
E.
,
2020
, “
Effect of Hydrogen on Fracture Locus of Fe–16Mn–0.6C–2.15Al TWIP Steel
,”
Int. J. Hydrogen Energy
,
45
(
58
), pp.
34227
34240
.
22.
Wasim
,
M.
, and
Djukic
,
M. B.
,
2020
, “
Hydrogen Embrittlement of Low Carbon Structural Steel at Macro-, Micro- and Nano-Levels
,”
Int. J. Hydrogen Energy
,
45
(
3
), pp.
2145
2156
.
23.
Tuğluca
,
I. B.
,
Koyama
,
M.
,
Shimomura
,
Y.
,
Bal
,
B.
,
Canadinc
,
D.
,
Akiyama
,
E.
, and
Tsuzaki
,
K.
,
2019
, “
Lowering Strain Rate Simultaneously Enhances Carbon- and Hydrogen-Induced Mechanical Degradation in an Fe-33Mn-1.1C Steel
,”
Metall. Mater. Trans. A: Phys. Metall. Mater. Sci.
,
50
(
3
), pp.
1137
1141
.
24.
Bal
,
B.
,
Sahin
,
I.
,
Uzun
,
A.
, and
Canadinc
,
D.
,
2016
, “
A New Venue Toward Predicting the Role of Hydrogen Embrittlement on Metallic Materials
,”
Metall. Mater. Trans. A: Phys. Metall. Mater. Sci.
,
47
(
11
), pp.
5409
5422
.
25.
Safyari
,
M.
,
Hojo
,
T.
, and
Moshtaghi
,
M.
,
2021
, “
Effect of Environmental Relative Humidity on Hydrogen-Induced Mechanical Degradation in an Al–Zn–Mg–Cu Alloy
,”
Vacuum
,
192
, p.
110489
.
26.
Burns
,
J. T.
,
Jones
,
J. J.
,
Thompson
,
A. D.
, and
Locke
,
J. S.
,
2018
, “
Fatigue Crack Propagation of Aerospace Aluminum Alloy 7075-T651 in High Altitude Environments
,”
Int. J. Fatigue
,
106
, pp.
196
207
.
27.
Kariya
,
K.
,
Kawagoishi
,
N.
,
Maeda
,
H.
,
Chen
,
Q.
,
Goto
,
M.
, and
Nu
,
Y.
,
2012
, “
Fatigue Fracture Mechanism of Extruded Al Alloy 7075-T6 in High Humidity
,”
Key Eng. Mater.
,
488–489
, pp.
45
48
.
28.
Yamada
,
R.
,
Itoh
,
G.
,
Kurumada
,
A.
, and
Nakai
,
M.
,
2017
, “
Further Study on the Effect of Environment on Fatigue Crack Growth Behavior of 2000 and 7000 Series Aluminum Alloys
,”
Mater. Sci. Forum
,
879
, pp.
2153
2157
.
29.
Yamada
,
H.
,
Tsurudome
,
M.
,
Miura
,
N.
,
Horikawa
,
K.
, and
Ogasawara
,
N.
,
2015
, “
Ductility Loss of 7075 Aluminum Alloys Affected by Interaction of Hydrogen, Fatigue Deformation, and Strain Rate
,”
Mater. Sci. Eng. A
,
642
, pp.
194
203
.
30.
Qi
,
W. J.
,
Song
,
R. G.
,
Zhang
,
Y.
,
Wang
,
C.
,
Qi
,
X.
, and
Li
,
H.
,
2015
, “
Study on Mechanical Properties and Hydrogen Embrittlement Susceptibility of 7075 Aluminium Alloy
,”
Corros. Eng. Sci. Technol.
,
50
(
6
), pp.
480
486
.
31.
Deya
,
S.
,
Chattoraja
,
I.
, and
Sivaprasada
,
S.
,
2015
, “
Effect of Hydrogen on Mechanical Degradation and Fatigue in 7075 Aluminium Alloy With In-Situ Hydrogenation
,”
Procedia Eng.
,
114
, pp.
461
469
.
32.
Bałon
,
P.
,
Rejman
,
E.
,
Smusz
,
R.
,
Szostak
,
J.
, and
Kiełbasa
,
B.
,
2018
, “
Implementation of High Speed Machining in Thin-Walled Aircraft Integral Elements
,”
Open Eng.
,
8
(
1
), pp.
162
169
.
33.
Dey
,
S.
, and
Chattoraj
,
I.
,
2016
, “
Interaction of Strain Rate and Hydrogen Input on the Embrittlement of 7075 T6 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
661
, pp.
168
178
.
34.
Rotella
,
G.
,
Dillon
,
O. W.
,
Umbrello
,
D.
,
Settineri
,
L.
, and
Jawahir
,
I. S.
,
2013
, “
Finite Element Modeling of Microstructural Changes in Turning of AA7075-T651 Alloy
,”
J. Manuf. Process.
,
15
(
1
), pp.
87
95
.
35.
Tuğluca
,
I. B.
,
Koyama
,
M.
,
Bal
,
B.
,
Canadinc
,
D.
,
Akiyama
,
E.
, and
Tsuzaki
,
K.
,
2018
, “
High-Concentration Carbon Assists Plasticity-Driven Hydrogen Embrittlement in a Fe-High Mn Steel With a Relatively High Stacking Fault Energy
,”
Mater. Sci. Eng. A
,
717
, pp.
78
84
.
36.
Rusinek
,
A.
, and
Rodríguez-Martínez
,
J. A.
,
2009
, “
Thermo-Viscoplastic Constitutive Relation for Aluminium Alloys, Modeling of Negative Strain Rate Sensitivity and Viscous Drag Effects
,”
Mater. Des.
,
30
(
10
), pp.
4377
4390
.
37.
Choi
,
Y.
,
Ha
,
J.
,
Lee
,
M. G.
, and
Korkolis
,
Y. P.
,
2021
, “
Observation of Portevin-Le Chatelier Effect in Aluminum Alloy 7075-w Under a Heterogeneous Stress Field
,”
Scr. Mater.
,
205
, p.
114178
.
38.
Zhou
,
P.
,
Song
,
Y.
,
Hua
,
L.
,
Lu
,
J.
,
Zhang
,
J.
, and
Wang
,
F.
,
2019
, “
Mechanical Behavior and Deformation Mechanism of 7075 Aluminum Alloy Under Solution Induced Dynamic Strain Aging
,”
Mater. Sci. Eng. A
,
759
, pp.
498
505
.
39.
Bal
,
B.
,
Koyama
,
M.
,
Gerstein
,
G.
,
Maier
,
H. J.
, and
Tsuzaki
,
K.
,
2016
, “
Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of Twinning-Induced Plasticity Steel Pre-Charged with High-Pressure Hydrogen Gas
,”
Int. J. Hydrogen Energy
,
41
(
34
), pp.
15362
15372
.
40.
Michler
,
T.
, and
Naumann
,
J.
,
2008
, “
Hydrogen Environment Embrittlement of Austenitic Stainless Steels at Low Temperatures
,”
Int. J. Hydrogen Energy
,
33
(
8
), pp.
2111
2122
.
41.
Birnbaum
,
H. K.
,
1994
, “
Hydrogen Effects on Deformation-Relation Between Dislocation Behavior and the Macroscopic Stress-Strain Behavior
,”
Scr. Metall. Mater.
,
31
(
2
), pp.
149
153
.
42.
Fan
,
H.
,
Wang
,
Q.
,
El-Awady
,
J. A.
,
Raabe
,
D.
, and
Zaiser
,
M.
,
2021
, “
Strain Rate Dependency of Dislocation Plasticity
,”
Nat. Commun.
,
12
(
1
), pp.
1
11
.
43.
Barsanti
,
M.
,
Beghini
,
M.
,
Frasconi
,
F.
,
Ishak
,
R.
,
Monelli
,
B. D.
, and
Valentini
,
R.
,
2018
, “
Experimental Study of Hydrogen Embrittlement in Maraging Steels
,”
Procedia Struct. Integrity
,
8
, pp.
501
508
.
44.
Dawari
,
A.
,
Kashyap
,
B.
, and
Singh
,
R.
,
2017
, “
Investigation of Adiabatic Heat Rise and Its Effect on Flow Stresses and Microstructural Changes During High Strain Rate Deformation of Ti6Al4V Alloy
,”
Sustainable Industrial Processing Summit SIPS 2017 Volume 9. Iron and Steel, Metals and Alloys
,
Quintana Roo, Mexico
,
Oct. 22–26
, pp.
178
189
.
45.
Vazquez-Fernandez
,
N. I.
,
Soares
,
G. C.
,
Smith
,
J. L.
,
Seidt
,
J. D.
,
Isakov
,
M.
,
Gilat
,
A.
,
Kuokkala
,
V. T.
, and
Hokka
,
M.
,
2019
, “
Adiabatic Heating of Austenitic Stainless Steels at Different Strain Rates
,”
J. Dyn. Behav. Mater.
,
5
(
3
), pp.
221
229
.
46.
Sorini
,
C.
,
Chattopadhyay
,
A.
, and
Goldberg
,
R. K.
,
2018
, “
Effects of Adiabatic Heating on the High Strain Rate Deformation Response of Triaxially Braided Polymer Matrix Composites
,”
American Society for Composites (ASC) Annual Technical Conference
,
Cleveland, OH
,
Apr. 9–12
.
47.
Singh
,
S. S.
,
Schwartzstein
,
C.
,
Williams
,
J. J.
,
Xiao
,
X.
,
de Carlo
,
F.
, and
Chawla
,
N.
,
2014
, “
3D Microstructural Characterization and Mechanical Properties of Constituent Particles in Al 7075 Alloys Using X-ray Synchrotron Tomography and Nanoindentation
,”
J. Alloys Compd.
,
602
, pp.
163
174
.
48.
Dong
,
F.
,
Li
,
H.
,
Shi
,
Z.
,
Zhou
,
Q.
,
Chen
,
L.
,
Chen
,
J.
,
Du
,
L.
, and
Atrens
,
A.
,
2021
, “
Effect of Vanadium and Rare Earth Microalloying on the Hydrogen Embrittlement Susceptibility of a Fe-18Mn-0. 6C TWIP Steel Studied Using the Linearly Increasing Stress Test
,”
Corros. Sci.
,
185
, p.
109440
.
49.
Lin
,
Y. C.
,
Zhu
,
X. H.
,
Dong
,
W. Y.
,
Yang
,
H.
,
Xiao
,
Y. W.
, and
Kotkunde
,
N.
,
2020
, “
Effects of Deformation Parameters and Stress Triaxiality on the Fracture Behaviors and Microstructural Evolution of an Al-Zn-Mg-Cu Alloy
,”
J. Alloys Compd.
,
832
, p.
154988
.
50.
Yoshioka
,
R.
,
Haruyama
,
S.
,
Kaminishi
,
K.
, and
Osaki
,
S.
, “
A Comparison in Hydrogen-Environment Embrittlement Response Between T6 and T73 Tempers of 7075 Aluminum Alloy
,”
Proceedings of the 8th International Conference on Innovation & Management
,
Kitakyushu, Japan
,
Nov. 30–Dec. 2
.
51.
Scully
,
J. R.
,
Young
,
G. A.
, and
Smith
,
S. W.
,
2012
, “Hydrogen Embrittlement of Aluminum and Aluminum-Based Alloys,”
Gaseous Hydrogen Embrittlement of Materials in Energy Technologies
,
R. P.
Gangloff
and
B. P.
Somerday
, eds.,
Elsevier Ltd.
, pp.
707
768
.
You do not currently have access to this content.