Abstract

The shear failure behaviors of U71Mn rail steel are investigated by quasi-static and dynamic compression tests utilizing two different hat-shaped specimens: S1 which combines shear and compressive stress states and S2 which combines shear and tensile stress states. A split Hopkinson pressure bar is used to acquire shear stress–strain curves at various initial temperatures and shear strain rates, and it is found that a lower shear strain rate is observed in hat-shaped specimen S1 than that in hat-shaped specimen S2 under the same impact pressure. Scanning electron microscopy is employed for observing the microstructures of specimens. The results indicate that the hat-shaped specimen S1 is difficult to form voids and dimples. Moreover, as far as the hat-shaped specimen S2 is concerned, the number of voids reduces with the rising shear strain rate, and no voids appear on the fracture surface at the shear strain rate of 36,000 s−1. Furthermore, the creation of voids is aided by a rise in initial temperature. The factors affecting the formation of adiabatic shear bands are explored based on the numerical simulation, which suggests that the magnitude of the temperature gradient plays a crucial role in the generation of adiabatic shear bands.

References

1.
Kang
,
G.
, and
Gao
,
Q.
,
2002
, “
Uniaxial and Non-Proportionally Multiaxial Ratcheting of U71Mn Rail Steel: Experiments and Simulations
,”
Mech. Mater.
,
34
(
12
), pp.
809
820
.
2.
Zhu
,
Y.
,
Kang
,
G.
, and
Yu
,
C.
,
2017
, “
A Finite Cyclic Elasto-Plastic Constitutive Model to Improve the Description of Cyclic Stress–Strain Hysteresis Loops
,”
Int. J. Plast.
,
95
, pp.
191
215
.
3.
Liu
,
P.
,
Quan
,
Y.
, and
Ding
,
G.
,
2019
, “
Dynamic Mechanical Characteristics and Constitutive Modeling of Rail Steel Over a Wide Range of Temperatures and Strain Rates
,”
Adv. Mater. Sci. Eng.
,
2019
, p.
6862391
.
4.
Han
,
L. L.
,
Jing
,
L.
,
Wei
,
H. C.
, and
Yan
,
Y. Z.
,
2016
, “
Experimental Characterization of the Dynamic Compressive Properties of Railway Wheel Steel
,”
Mater. Sci. Forum
,
867
, pp.
29
33
.
5.
Zhong
,
W.
,
Hu
,
J. J.
,
Li
,
Z. B.
,
Liu
,
Q. Y.
, and
Zhou
,
Z. R.
,
2011
, “
A Study of Rolling Contact Fatigue Crack Growth in U75V and U71Mn Rails
,”
Wear
,
271
(
1–2
), pp.
388
392
.
6.
Ma
,
L.
,
Shi
,
L. B.
,
Guo
,
J.
,
Liu
,
Q. Y.
, and
Wang
,
W. J.
,
2018
, “
On the Wear and Damage Characteristics of Rail Material Under Low Temperature Environment Condition
,”
Wear
,
394–395
, pp.
149
158
.
7.
Wang
,
Y.
,
Zhou
,
H.
,
Shi
,
Y.
, and
Feng
,
B.
,
2012
, “
Mechanical Properties and Fracture Toughness of Rail Steels and Thermite Welds at Low Temperature
,”
Int. J. Miner. Metall. Mater.
,
19
(
5
), pp.
409
420
.
8.
Meyer
,
L. W.
, and
Manwaring
,
S.
,
1986
, “Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading,”
Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena
, 1st ed.,
L. E.
Murr
,
K. P.
Staudhammer
, and
M. A.
Meyers
, eds.,
Marcel Dekker Inc.
,
New York
, pp.
657
674
.
9.
Gu
,
T.
, and
Wang
,
Z.
,
2022
, “
A Strain Rate-Dependent Cohesive Zone Model for Shear Failure of Hat-Shaped Specimens Under Impact
,”
Eng. Fract. Mech.
,
259
, p.
108145
.
10.
Budiwantoro
,
B.
,
Kariem
,
M. A.
, and
Febrinawarta
,
B.
,
2021
, “
The Influence of Shear Angles on the Split Hopkinson Shear Bar Testing
,”
Int. J. Impact Eng.
,
149
, p.
103787
.
11.
Nemat-Nasser
,
S.
,
Isaacs
,
J. B.
, and
Liu
,
M.
,
1998
, “
Microstructure of High-Strain, High-Strain-Rate Deformed Tantalum
,”
Acta Mater.
,
46
(
4
), pp.
1307
1325
.
12.
Ran
,
C.
,
Chen
,
P.
,
Li
,
L.
, and
Zhang
,
W.
,
2017
, “
Dynamic Shear Deformation and Failure of Ti–5Al–5Mo–5V–1Cr–1Fe Titanium Alloy
,”
Mater. Sci. Eng. A
,
694
, pp.
41
47
.
13.
Peirs
,
J.
,
Verleysen
,
P.
,
Degrieck
,
J.
, and
Coghe
,
F.
,
2010
, “
The Use of Hat-Shaped Specimens to Study the High Strain Rate Shear Behaviour of Ti–6Al–4V
,”
Int. J. Impact Eng.
,
37
(
6
), pp.
703
714
.
14.
Wang
,
T.
,
Liu
,
Z. L.
,
Cui
,
Y. N.
,
Ye
,
X.
,
Liu
,
X. M.
,
Tian
,
R.
, and
Zhuang
,
Z.
,
2020
, “
A Thermo-Elastic-Plastic Phase-Field Model for Simulating the Evolution and Transition of Adiabatic Shear Band. Part I. Theory and Model Calibration
,”
Eng. Fract. Mech.
,
232
, p.
107028
.
15.
Ge
,
C.
,
Yu
,
Q.
,
Zhang
,
H.
,
Qu
,
Z.
,
Wang
,
H.
, and
Zheng
,
Y.
,
2020
, “
On Dynamic Response and Fracture-Induced Initiation Characteristics of Aluminum Particle Filled PTFE Reactive Material Using Hat-Shaped Specimens
,”
Mater. Des.
,
188
, p.
108472
.
16.
Zhou
,
S.
,
Deng
,
C.
,
Liu
,
S.
,
Liu
,
Y.
,
Zhu
,
J.
, and
Yuan
,
X.
,
2022
, “
Effect of Strain Rates on Mechanical Properties, Microstructure and Texture Inside Shear Bands of Pure Magnesium
,”
Mater. Charact.
,
184
, p.
111686
.
17.
Jafarian
,
H. R.
,
Mahdavian
,
M. M.
,
Shams
,
S. A. A.
, and
Eivani
,
A. R.
,
2021
, “
Microstructure Analysis and Observation of Peculiar Mechanical Properties of Al/Cu/Zn/Ni Multi-Layered Composite Produced by Accumulative-Roll-Bonding (ARB)
,”
Mater. Sci. Eng. A
,
805
, p.
140556
.
18.
Longère
,
P.
, and
Dragon
,
A.
,
2013
, “
Description of Shear Failure in Ductile Metals Via Back Stress Concept Linked to Damage-Microporosity Softening
,”
Eng. Fract. Mech.
,
98
, pp.
92
108
.
19.
Zhang
,
J.
,
Tan
,
C.
,
Ren
,
Y.
,
Yu
,
X.
,
Ma
,
H.
,
Wang
,
F.
, and
Cai
,
H.
,
2011
, “
Adiabatic Shear Fracture in Ti–6Al–4V Alloy
,”
Trans. Nonferrous Met. Soc. China
,
21
(
11
), pp.
2396
2401
.
20.
Rastegari
,
H. A.
,
Asgari
,
S.
, and
Abbasi
,
S. M.
,
2011
, “
Producing Ti–6Al–4V/TiC Composite With Good Ductility by Vacuum Induction Melting Furnace and Hot Rolling Process
,”
Mater. Des.
,
32
(
10
), pp.
5010
5014
.
21.
Zhou
,
T.
,
Wu
,
J.
,
Che
,
J.
,
Wang
,
Y.
, and
Wang
,
X.
,
2017
, “
Dynamic Shear Characteristics of Titanium Alloy Ti–6Al–4V at Large Strain Rates by the Split Hopkinson Pressure Bar Test
,”
Int. J. Impact Eng.
,
109
, pp.
167
177
.
22.
Rizal
,
S.
, and
Homma
,
H.
,
2000
, “
Dimple Fracture Under Short Pulse Loading
,”
Int. J. Impact Eng.
,
24
(
1
), pp.
69
83
.
23.
Lee
,
W. S.
,
Liu
,
C. Y.
, and
Chen
,
T. H.
,
2008
, “
Adiabatic Shearing Behavior of Different Steels Under Extreme High Shear Loading
,”
J. Nucl. Mater.
,
374
(
1–2
), pp.
313
319
.
24.
Wu
,
J.
,
Lu
,
X.
, and
Wang
,
Z.
,
2022
, “
Dynamic Response and Failure Behavior of U71Mn Using a Hat-Shaped Specimen
,”
J. Mater. Eng. Perform
,
31
(
3
), pp.
2193
2204
.
25.
Wei
,
Q.
,
Kecskes
,
L.
,
Jiao
,
T.
,
Hartwig
,
K. T.
,
Ramesh
,
K. T.
, and
Ma
,
E.
,
2004
, “
Adiabatic Shear Banding in Ultrafine-Grained Fe Processed by Severe Plastic Deformation
,”
Acta Mater.
,
52
(
7
), pp.
1859
1869
.
26.
Ma
,
Y.
,
Yuan
,
F.
,
Yang
,
M.
,
Jiang
,
P.
,
Ma
,
E.
, and
Wu
,
X.
,
2018
, “
Dynamic Shear Deformation of a CrCoNi Medium-Entropy Alloy With Heterogeneous Grain Structures
,”
Acta Mater.
,
148
, pp.
407
418
.
27.
Du
,
Y.
,
Yang
,
X.
,
Li
,
Z.
,
Hao
,
F.
,
Mao
,
Y.
,
Li
,
S.
,
Liu
,
X.
,
Feng
,
Y.
, and
Yan
,
Z.
,
2021
, “
Shear Localization Behavior in Hat-Shaped Specimen of Near-α Ti−6Al−2Zr−1Mo−1V Titanium Alloy Loaded at High Strain Rate
,”
Trans. Nonferrous Met. Soc. China
,
31
(
6
), pp.
1641
1655
.
28.
Yang
,
Y.
,
Jiang
,
F.
,
Zhou
,
B. M.
,
Li
,
X. M.
,
Zheng
,
H. G.
, and
Zhang
,
Q. M.
,
2011
, “
Microstructural Characterization and Evolution Mechanism of Adiabatic Shear Band in a Near Beta-Ti Alloy
,”
Mater. Sci. Eng. A
,
528
(
6
), pp.
2787
2794
.
29.
Landau
,
P.
,
Osovski
,
S.
,
Venkert
,
A.
,
Gärtnerová
,
V.
, and
Rittel
,
D.
,
2016
, “
The Genesis of Adiabatic Shear Bands
,”
Sci. Rep.
, 6(
1
), p.
37226
.
30.
Wu
,
X.
,
Li
,
L.
,
Liu
,
W.
,
Li
,
S.
,
Zhang
,
L.
, and
He
,
H.
,
2018
, “
Development of Adiabatic Shearing Bands in 7003-T4 Aluminum Alloy Under High Strain Rate Impacting
,”
Mater. Sci. Eng. A
,
732
, pp.
91
98
.
31.
Walley
,
S. M.
,
2007
, “
Shear Localization: A Historical Overview
,”
Metall. Mater. Trans. A
,
38
(
11
), pp.
2629
2654
.
32.
Yuan
,
F.
,
Jiang
,
P.
, and
Wu
,
X.
,
2012
, “
Annealing Effect on the Evolution of Adiabatic Shear Band Under Dynamic Shear Loading in Ultra-Fine-Grained Iron
,”
Int. J. Impact Eng.
,
50
, pp.
1
8
.
33.
Xing
,
J.
,
Yuan
,
F.
, and
Wu
,
X.
,
2017
, “
Enhanced Quasi-Static and Dynamic Shear Properties by Heterogeneous Gradient and Lamella Structures in 301 Stainless Steels
,”
Mater. Sci. Eng. A
,
680
, pp.
305
316
.
34.
Ran
,
C.
,
Liu
,
Q.
,
Chen
,
P.
, and
Chen
,
Q.
,
2020
, “
Dynamic Forced Shear Characteristics of Ti–6Al–4V Alloy Using Flat Hat-Shaped Specimen
,”
Eng. Fract. Mech.
,
238
, p.
107286
.
35.
Mishra
,
B.
,
Jena
,
P. K.
,
Ramakrishna
,
B.
,
Madhu
,
V.
,
Bhat
,
T. B.
, and
Gupta
,
N. K.
,
2012
, “
Effect of Tempering Temperature, Plate Thickness and Presence of Holes on Ballistic Impact Behavior and ASB Formation of a High Strength Steel
,”
Int. J. Impact Eng.
,
44
, pp.
17
28
.
36.
Guo
,
Y.
,
Ruan
,
Q.
,
Zhu
,
S.
,
Wei
,
Q.
,
Lu
,
J.
,
Hu
,
B.
,
Wu
,
X.
, and
Li
,
Y.
,
2020
, “
Dynamic Failure of Titanium: Temperature Rise and Adiabatic Shear Band Formation
,”
J. Mech. Phys. Solids
,
135
, p.
103811
.
37.
Wang
,
L. M.
,
Zhou
,
Q. Y.
,
Tang
,
L.
,
Wu
,
X.
,
Zhu
,
M.
,
Feng
,
C.
,
Zhang
,
Y.
, et al
,
2007
, “Hot-Rolled Steel Rails for Railway,” Chinese National Standard, GB 2585-2007.
38.
Edwards
,
N. J.
,
Song
,
W.
,
Cimpoeru
,
S. J.
,
Ruan
,
D.
,
Lu
,
G.
, and
Herzig
,
N.
,
2018
, “
Mechanical and Microstructural Properties of 2024-T351 Aluminium Using a Hat-Shaped Specimen at High Strain Rates
,”
Mater. Sci. Eng. A
,
720
, pp.
203
213
.
39.
Swift
,
H. W.
,
1952
, “
Plastic Instability Under Plane Stress
,”
J. Mech. Phys. Solids
,
1
(
1
), pp.
1
18
.
40.
Voce
,
E.
,
1948
, “
The Relationship Between Stress and Strain for Homogeneous Deformation
,”
J. Inst. Met.
,
74
, pp.
537
562
.
41.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
42.
Hillerborg
,
A.
,
Modéer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
781
.
You do not currently have access to this content.