Abstract

The current standard application method for thermal barrier coatings (TBCs) on turbine blades for jet engines is electron-beam physical vapor deposition (EB-PVD) due to its high strain tolerance and low thermal conductivity. An emerging deposition method, plasma-spray physical vapor deposition (PS-PVD), presents an opportunity for a tailorable microstructure, and non-line-of-sight deposition that is faster and less expensive. To compare the lifetime behavior of both PS-PVD and EB-PVD coatings, samples subjected to 300 and 600 thermal cycles were measured during a 1 h thermal cycle to determine the strains, which were converted to stress, in the thermally grown oxide (TGO) layer of the TBCs using synchrotron X-ray diffraction (XRD). Room temperature XRD measurements indicated among samples that PS-PVD coatings experienced greater variation in in-plane room temperature strain in the TGO after cycling than the EB-PVD coatings. In-situ XRD measurements indicated similar high-temperature strain and no spallation after 600 thermal cycles for both coatings. Microscopy imaging after cycling showed greater rumpling in PS-PVD coatings that led to different failure modes between the two coatings’ TGO layers. The tailorability of PS-PVD coatings allows for adjustments in the processing parameters to improve their overall performance after aging and bridge the differences between the two deposition methods.

References

1.
Clarke
,
D.
, and
Levi
,
C.
,
2003
, “
Materials Design for the Next Generation Thermal Barrier Coatings
,”
Annu. Rev. Mater. Res.
,
33
(
1
), pp.
383
417
.
2.
Vaidyanathan
,
K.
,
Gell
,
M.
, and
Jordan
,
E.
,
2000
, “
Mechanisms of Spallation of Electron Beam Physical Vapor Deposited Thermal Barrier Coatings With and Without Platinum Aluminide Bond Coat Ridges
,”
Surf. Coat. Technol.
,
133
, pp.
28
34
.
3.
Schlichting
,
K. W.
,
Padture
,
N.
,
Jordan
,
E.
, and
Gell
,
M.
,
2003
, “
Failure Modes in Plasma-Sprayed Thermal Barrier Coatings
,”
Mater. Sci. Eng. A
,
342
(
1–2
), pp.
120
130
.
4.
Wang
,
X.
,
Zhen
,
Z.
,
Huang
,
G.
,
Mu
,
R.
,
He
,
L.
, and
Xu
,
Z.
,
2021
, “
Thermal Cycling of EB-PVD TBCs Based on YSZ Ceramic Coat and Diffusion Aluminide Bond Coat
,”
J. Alloys Compd.
,
873
, p.
159720
.
5.
Lipkin
,
D.
,
Clarke
,
D.
,
Hollatz
,
M.
,
Bobeth
,
M.
, and
Pompe
,
W.
,
1997
, “
Stress Development in Alumina Scales Formed up on Oxidation of (111) Nial Single Crystals
,”
Corros. Sci.
,
39
(
2
), pp.
231
242
.
6.
Hou
,
P.
,
Paulikas
,
A.
, and
Veal
,
B.
,
2009
, “
Growth Strains in Thermally Grown Al2O3 Scales Studied Using Synchrotron Radiation
,”
JOM
,
61
(
7
), pp.
51
55
.
7.
Tolpygo
,
V.
, and
Clarke
,
D.
,
2000
, “
Microstructural Study of the Theta-Alpha Transformation in Alumina Scales Formed on Nickel-Aluminides
,”
Mater. High Temp.
,
17
(
1
), pp.
59
70
.
8.
Wang
,
X.
,
Atkinson
,
A.
,
Chirivì
,
L.
, and
Nicholls
,
J. R.
,
2010
, “
Evolution of Stress and Morphology in Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
204
(
23
), pp.
3851
3857
.
9.
Ganvir
,
A.
,
Curry
,
N.
,
Bjorklund
,
S.
,
Markocsan
,
N.
, and
Nylen
,
P.
,
2015
, “
Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS)
,”
J. Therm. Spray Technol.
,
24
(
7
), pp.
1195
1204
.
10.
Ahrens
,
M.
,
Vaßen
,
R.
,
Stover
,
D.
, and
Lampenscherf
,
S.
,
2004
, “
Sintering and Creep Processes in Plasma-Sprayed Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
13
(
3
), pp.
432
442
.
11.
Kumar
,
N.
,
Gupta
,
M.
,
Mack
,
D. E.
,
Mauer
,
G.
, and
Vaßen
,
R.
,
2021
, “
Columnar Thermal Barrier Coatings Produced by Different Thermal Spray Processes
,”
J. Therm. Spray Technol.
,
30
(
6
), pp.
1437
1452
.
12.
Veal
,
B.
, and
Paulikas
,
A.
,
2008
, “
Growth Strains and Creep in Thermally Grown Alumina: Oxide Growth Mechanisms
,”
J. Appl. Phys.
,
104
(
9
), p.
093525
.
13.
Hernandez
,
M. T.
,
Karlsson
,
A. M.
, and
Bartsch
,
M.
,
2009
, “
On TGO Creep and the Initiation of a Class of Fatigue Cracks in Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
203
(
23
), pp.
3549
3558
.
14.
Diaz
,
R.
,
Jansz
,
M.
,
Mossaddad
,
M.
,
Raghavan
,
S.
,
Okasinski
,
J.
,
Almer
,
J.
,
Pelaez-Perez
,
H.
, and
Imbrie
,
P.
,
2012
, “
Role of Mechanical Loads in Inducing in-Cycle Tensile Stress in Thermally Grown Oxide
,”
Appl. Phys. Lett.
,
100
(
11
), p.
111906
.
15.
Yang
,
J.
,
Zhao
,
H.
,
Zhong
,
X.
,
Ni
,
J.
,
Zhuang
,
Y.
,
Wang
,
L.
, and
Tao
,
S.
,
2018
, “
Evolution of Residual Stresses in PS-PVD Thermal Barrier Coatings on Thermal Cycling
,”
J. Therm. Spray Technol.
,
27
(
6
), pp.
914
923
.
16.
Yang
,
J.
,
Cheng
,
Z.
,
Zhong
,
X.
,
Shao
,
F.
,
Zhao
,
H.
,
Zhuang
,
Y.
,
Sheng
,
J.
,
Ni
,
J.
, and
Tao
,
S.
,
2021
, “
Deposition Behavior of PSPVD Yttria Partially Stabilized Zirconia Coatings
,”
J. Therm. Spray Technol.
,
30
(
5
), pp.
1136
1147
.
17.
Sridharan
,
S.
,
Xie
,
L.
,
Jordan
,
E. H.
, and
Gell
,
M.
,
2004
, “
Stress Variation With Thermal Cycling in the Thermally Grown Oxide of an EB-PVD Thermal Barrier Coating
,”
Surf. Coat. Technol.
,
179
(
2–3
), pp.
286
296
.
18.
Gell
,
M.
,
Sridharan
,
S.
,
Wen
,
M.
, and
Jordan
,
E. H.
,
2004
, “
Photoluminescence Piezospectroscopy: A Multi-purpose Quality Control and NDI Technique for Thermal Barrier Coatings
,”
Int. J. Appl. Ceram. Technol.
,
1
(
4
), pp.
316
329
.
19.
Wen
,
M.
,
Jordan
,
E. H.
, and
Gell
,
M.
,
2006
, “
Effect of Temperature on Rumpling and Thermally Grown Oxide Stress in an EB-PVD Thermal Barrier Coating
,”
Surf. Coat. Technol.
,
201
(
6
), pp.
3289
3298
.
20.
Miller
,
R. A.
,
1997
, “
Thermal Barrier Coatings for Aircraft Engines: History and Directions
,”
J. Therm. Spray Technol.
,
6
(
1
), pp.
35
42
.
21.
Evans
,
A.
,
He
,
M.
, and
Hutchinson
,
J.
,
2001
, “
Mechanics-Based Scaling Laws for the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
249
271
.
22.
Schulz
,
U.
,
Saruhan
,
B.
,
Fritscher
,
K.
, and
Leyens
,
C.
,
2004
, “
Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications
,”
Int. J. Appl. Ceram. Technol.
,
1
(
4
), pp.
302
315
.
23.
Fouliard
,
Q.
,
Hernandez
,
J.
,
Heeg
,
B.
,
Ghosh
,
R.
, and
Raghavan
,
S.
,
2020
, “
Phosphor Thermometry Instrumentation for Synchronized Acquisition of Luminescence Lifetime Decay and Intensity on Thermal Barrier Coatings
,”
Meas. Sci. Technol.
,
31
(
5
), p.
054007
.
24.
Fouliard
,
Q. P.
,
Ghosh
,
R.
, and
Raghavan
,
S.
,
2020
, “
Doped 8% Yttria Stabilized Zirconia for Temperature Measurements on Thermal Barrier Coatings Using Phosphor Thermometry
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6-10
.
25.
Manero
,
A.
, II
,
Selimov
,
A.
,
Fouliard
,
Q.
,
Knipe
,
K.
,
Wischek
,
J.
,
Meid
,
C.
,
Karlsson
,
A. M.
,
Bartsch
,
M.
, and
Raghavan
,
S.
,
2017
, “
Piezospectroscopic Evaluation and Damage Identification for Thermal Barrier Coatings Subjected to Simulated Engine Environments
,”
Surf. Coat. Technol.
,
323
, pp.
30
38
.
26.
Fouliard
,
Q.
,
Haldar
,
S.
,
Ghosh
,
R.
, and
Raghavan
,
S.
,
2019
, “
Modeling Luminescence Behavior for Phosphor Thermometry Applied to Doped Thermal Barrier Coating Configurations
,”
Appl. Opt.
,
58
(
13
), pp.
D68
D75
.
27.
Harder
,
B. J.
,
2020
, “
Oxidation Performance of si-hfo2 Environmental Barrier Coating Bond Coats Deposited Via Plasma Spray-Physical Vapor Deposition
,”
Surf. Coat. Technol.
,
384
, p.
125311
.
28.
Von Niessen
,
K.
,
Gindrat
,
M.
, and
Refke
,
A.
,
2010
, “
Vapor Phase Deposition Using Plasma Spray-PVD
,”
J. Therm. Spray Technol.
,
19
(
1–2
), pp.
502
509
.
29.
Hospach
,
A.
,
Mauer
,
G.
,
Vassen
,
R.
, and
Stover
,
D.
,
2011
, “
Columnar-Structured Thermal Barrier Coatings (TBCs) by Thin Film Low-Pressure Plasma Spraying (Lpps-tf)
,”
J. Therm. Spray Technol.
,
20
(
1
), pp.
116
120
.
30.
Harder
,
B. J.
, and
Zhu
,
D.
,
2011
, “
Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings
,”
35th International Conference and Exposition on Advanced Ceramics and Composites
,
Dayton Beach, FL
,
Jan. 23–28
.
31.
Dorier
,
J.-L.
,
Gindrat
,
M.
,
Hollenstein
,
C.
,
Loch
,
M.
,
Refke
,
A.
,
Salito
,
A.
, and
Barbezat
,
G.
,
2001
, “
New Surfaces For A New Millennium
,”
2nd International Thermal Spray Conference
,
Singapore
,
May 28–30
.
32.
Harder
,
B. J.
,
Zhu
,
D.
,
Schmitt
,
M. P.
, and
Wolfe
,
D. E.
,
2017
, “
Microstructural Effects and Properties of Non-Line-of-Sight Coating Processing Via Plasma Spray-Physical Vapor Deposition
,”
J. Therm. Spray Technol.
,
26
(
6
), pp.
1052
1061
.
33.
Refke
,
A.
,
Gindrat
,
M.
,
von Niessen
,
K.
, and
Damani
,
R.
,
2007
, “
Lpps Thin Film: A Hybrid Coating Technology Between Thermal Spray and PVD for Functional Thin Coatings and Large Area Applications
,”
Thermal Spray 2007: Global Coating Solutions
,
Beijing, China
,
May 14–16
.
34.
Karger
,
M.
,
Vaßen
,
R.
, and
Stover
,
D.
,
2011
, “
Atmospheric Plasma Sprayed Thermal Barrier Coatings With High Segmentation Crack Densities: Spraying Process, Microstructure and Thermal Cycling Behavior
,”
Surf. Coat. Technol.
,
206
(
1
), pp.
16
23
.
35.
Mauer
,
G.
, and
Vaßen
,
R.
,
2020
, “
Coatings With Columnar Microstructures for Thermal Barrier Applications
,”
Adv. Eng. Mater.
,
22
(
6
), p.
1900988
.
36.
Rezanka
,
S.
,
Mauer
,
G.
, and
Vaßen
,
R.
,
2014
, “
Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD
,”
J. Therm. Spray Technol.
,
23
(
1
), pp.
182
189
.
37.
Rezanka
,
S.
,
Mack
,
D. E.
,
Mauer
,
G.
,
Sebold
,
D.
,
Guillon
,
O.
, and
Vaßen
,
R.
,
2017
, “
Investigation of the Resistance of Opencolumn-Structured PS-PVD TBCS to Erosive and High-Temperature Corrosive Attack
,”
Surf. Coat. Technol.
,
324
, pp.
222
235
.
38.
Gell
,
M.
,
Vaidyanathan
,
K.
,
Barber
,
B.
,
Jordan
,
E.
, and
Cheng
,
J.
,
1999
, “
Mechanism of Spallation in Platinum Aluminide/Electron Beam Physical Vapor-Deposited Thermal Barrier Coatings
,”
Metall. Mater. Trans. A
,
30
(
2
), pp.
427
435
.
39.
Northam
,
M.
,
Rossmann
,
L.
,
Sarley
,
B.
,
Harder
,
B.
,
Park
,
J.-S.
,
Kenesei
,
P.
,
Almer
,
J.
,
Viswanathan
,
V.
, and
Raghavan
,
S.
,
2019
, “
Comparison of Electron-Beam Physical Vapor Deposition and Plasma-Spray Physical Vapor Deposition Thermal Barrier Coating Properties Using Synchrotron X-ray Diffraction
,”
Turbo Expo: Power for Land, Sea, and Air
,
Phoenix, AZ
,
June 17–21
, Vol. 58677, American Society of Mechanical Engineers, p. V006T24A009.
40.
Northam
,
M.
,
Rossmann
,
L.
,
Sarley
,
B.
,
Smith
,
M.
,
Kenesei
,
P.
,
Park
,
J.-S.
,
Almer
,
J.
,
Harder
,
B.
,
Viswanathan
,
V.
, and
Raghavan
,
S.
,
2020
, “
Comparison of Thermally Cycled PS-PVD and EB-PVD Thermal Barrier Coatings’ Depth-Resolved Monoclinic Phase Evolution Via Synchrotron X-ray Diffraction
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p.
0632
.
41.
Almer
,
J.
,
Lienert
,
U.
,
Peng
,
R. L.
,
Schlauer
,
C.
, and
Oden
,
M.
,
2003
, “
Strain and Texture Analysis of Coatings Using High-Energy X-rays
,”
J. Appl. Phys.
,
94
(
1
), pp.
697
702
.
42.
Hauk
,
V.
,
1997
,
Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation-Application-Assessment
,
Elsevier
,
New York
.
43.
Thornton
,
J.
,
Slater
,
S.
, and
Almer
,
J.
,
2005
, “
The Measurement of Residual Strains Within Thermal Barrier Coatings Using High-Energy X-ray Diffraction
,”
J. Am. Ceram. Soc.
,
88
(
10
), pp.
2817
2825
.
44.
Weyant
,
C.
,
Almer
,
J.
, and
Faber
,
K.
,
2010
, “
Through-Thickness Determination of Phase Composition and Residual Stresses in Thermal Barrier Coatings Using High-Energy X-rays
,”
Acta Mater.
,
58
(
3
), pp.
943
951
.
45.
Christensen
,
R.
,
Tolpygo
,
V.
, and
Clarke
,
D.
,
1997
, “
The Influence of the Reactive Element Yttrium on the Stress in Alumina Scales Formed by Oxidation
,”
Acta Mater.
,
45
(
4
), pp.
1761
1766
.
46.
Pint
,
B. A.
,
Wright
,
I. G.
,
Lee
,
W. Y.
,
Zhang
,
Y.
,
Prüßner
,
K.
, and
Alexander
,
K. B.
,
1998
, “
Substrate and Bond Coat Compositions: Factors Affecting Alumina Scale Adhesion
,”
Mater. Sci. Eng. A
,
245
(
2
), pp.
201
211
.
47.
Rossmann
,
L.
,
Northam
,
M.
,
Sarley
,
B.
,
Chernova
,
L.
,
Viswanathan
,
V.
,
Harder
,
B.
, and
Raghavan
,
S.
,
2019
, “
Investigation of TGO Stress in Thermally Cycled Plasma-Spray Physical Vapor Deposition and Electron-Beam Physical Vapor Deposition Thermal Barrier Coatings Via Photoluminescence Spectroscopy
,”
Surf. Coat. Technol.
,
378
, p.
125047
.
48.
Fouliard
,
Q.
,
Ebrahimi
,
H.
,
Hernandez
,
J.
,
Vo
,
K.
,
Accornero
,
F.
,
McCay
,
M.
,
Park
,
J.-S.
,
Almer
,
J.
,
Ghosh
,
R.
, and
Raghavan
,
S.
,
2022
, “
Stresses Within Rare-Earth Doped Yttria-Stabilized Zirconia Thermal Barrier Coatings From In-Situ Synchrotron X-ray Diffraction at High Temperatures
,”
Surf. Coat. Technol.
,
444
, p.
128647
.
49.
Stein
,
Z.
,
Kenesei
,
P.
,
Park
,
J.-S.
,
Almer
,
J.
,
Naraparaju
,
R.
,
Schulz
,
U.
, and
Raghavan
,
S.
,
2020
, “
High-Energy X-ray Phase Analysis of Cmas-Infiltrated 7ysz Thermal Barrier Coatings: Effect of Time and Temperature
,”
J. Mater. Res.
,
35
(
17
), pp.
2300
2310
.
50.
Knipe
,
K.
,
Manero
,
A.
, II
,
Siddiqui
,
S. F.
,
Meid
,
C.
,
Wischek
,
J.
,
Okasinski
,
J.
,
Almer
,
J.
,
Karlsson
,
A. M.
,
Bartsch
,
M.
, and
Raghavan
,
S.
,
2014
, “
Strain Response of Thermal Barrier Coatings Captured Under Extreme Engine Environments Through Synchrotron X-ray Diffraction
,”
Nat. Commun.
,
5
(
1
), p.
4559
.
51.
Manero
,
A.
,
Sofronsky
,
S.
,
Knipe
,
K.
,
Meid
,
C.
,
Wischek
,
J.
,
Okasinski
,
J.
,
Almer
,
J.
,
Karlsson
,
A. M.
,
Raghavan
,
S.
, and
Bartsch
,
M.
,
2015
, “
Monitoring Local Strain in a Thermal Barrier Coating System Under Thermal Mechanical Gas Turbine Operating Conditions
,”
JOM
,
67
(
7
), pp.
1528
1539
.
52.
Manero
,
A.
,
Knipe
,
K.
,
Wischek
,
J.
,
Meid
,
C.
,
Okasinski
,
J.
,
Almer
,
J.
,
Karlsson
,
A. M.
,
Bartsch
,
M.
, and
Raghavan
,
S.
,
2018
, “
Capturing the Competing Influence of Thermal and Mechanical Loads on the Strain of Turbine Blade Coatings Via High Energy X-rays
,”
Coatings
,
8
(
9
), p.
320
.
53.
Siddiqui
,
S. F.
,
Knipe
,
K.
,
Manero
,
A.
,
Meid
,
C.
,
Wischek
,
J.
,
Okasinski
,
J.
,
Almer
,
J.
,
Karlsson
,
A. M.
,
Bartsch
,
M.
, and
Raghavan
,
S.
,
2013
, “
Synchrotron X-ray Measurement Techniques for Thermal Barrier Coated Cylindrical Samples Under Thermal Gradients
,”
Rev. Sci. Instrum.
,
84
(
8
), p.
083904
.
54.
Knipe
,
K.
,
Manero
,
A. C.
,
Sofronsky
,
S.
,
Okasinski
,
J.
,
Almer
,
J.
,
Wischek
,
J.
,
Meid
,
C.
,
Karlsson
,
A.
,
Bartsch
,
M.
, and
Raghavan
,
S.
,
2015
, “
Synchrotron X-ray Diffraction Measurements Mapping Internal Strains of Thermal Barrier Coatings During Thermal Gradient Mechanical Fatigue Loading
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
082506
.
55.
Almer
,
J.
, and
Stock
,
S.
,
2005
, “
Internal Strains and Stresses Measured in Cortical Bone Via High-Energy X-ray Diffraction
,”
J. Struct. Biol.
,
152
(
1
), pp.
14
27
.
56.
He
,
B. B.
,
2003
, “
Introduction to Two-Dimensional X-ray Diffraction
,”
Powder Diffr.
,
18
(
2
), pp.
71
85
.
57.
Almer
,
J.
,
Swift
,
G. A.
,
Nychka
,
J. A.
,
Ustundag
,
E.
, and
Clarke
,
D. R.
,
2005
, “
In Situ Synchrotron Measurements of Oxide Growth Strains
,”
Mater. Sci. Forum
,
490
, pp.
287
293
.
58.
Shang
,
S.-L.
,
Zhang
,
H.
,
Wang
,
Y.
, and
Liu
,
Z.-K.
,
2010
, “
Temperature-Dependent Elastic Stiffness Constants of α-and θ-Al2O3 From First-Principles Calculations
,”
J. Phys.: Condens. Matter
,
22
(
37
), p.
375403
.
59.
Manns
,
T.
, and
Scholtes
,
B.
,
2011
, “
Deccalc—A Program for the Calculation of Diffraction Elastic Constants From Single Crystal Coefficients
,”
Mater. Sci. Forum
,
681
(
2
), pp.
417
419
.
60.
Noyan
,
I. C.
, and
Cohen
,
J. B.
,
2013
,
Residual Stress: Measurement by Diffraction and Interpretation
,
Springer
,
New York
.
61.
Ma
,
C.-H.
,
Huang
,
J.-H.
, and
Chen
,
H.
,
2002
, “
Residual Stress Measurement in Textured Thin Film by Grazing Incidence X-ray Diffraction
,”
Thin Solid Films
,
418
(
2
), pp.
73
78
.
62.
Tkadletz
,
M.
,
Keckes
,
J.
,
Schalk
,
N.
,
Krajinovic
,
I.
,
Burghammer
,
M.
,
Czettl
,
C.
, and
Mitterer
,
C.
,
2015
, “
Residual Stress Gradients in α-Al2O3 Hard Coatings Determined by Pencil-Beam X-ray Nanodiffraction: The Influence of Blasting Media
,”
Surf. Coat. Technol.
,
262
, pp.
134
140
.
63.
Tolpygo
,
V.
,
Clarke
,
D.
, and
Murphy
,
K.
,
2001
, “
Oxidation-Induced Failure of EB-PVD Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
146
, pp.
124
131
.
64.
Zhu
,
W.
,
Cai
,
M.
,
Yang
,
L.
,
Guo
,
J.
,
Zhou
,
Y.
, and
Lu
,
C.
,
2015
, “
The Effect of Morphology of Thermally Grown Oxide on the Stress Field in a Turbine Blade With Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
276
, pp.
160
167
.
65.
Fouliard
,
Q.
,
Ghosh
,
R.
, and
Raghavan
,
S.
,
2020
, “
Quantifying Thermal Barrier Coating Delamination Through Luminescence Modeling
,”
Surf. Coat. Technol.
,
399
, p.
126153
.
66.
Bhatnagar
,
H.
,
Ghosh
,
S.
, and
Walter
,
M. E.
,
2006
, “
Parametric Studies of Failure Mechanisms in Elastic EB-PVD Thermal Barrier Coatings Using FEM
,”
Int. J. Solids Struct.
,
43
(
14–15
), pp.
4384
4406
.
67.
Vaßen
,
R.
,
Traeger
,
F.
, and
Stover
,
D.
,
2004
, “
Correlation Between Spraying Conditions and Microcrack Density and Their Influence on Thermal Cycling Life of Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
13
(
3
), pp.
396
404
.
68.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.
69.
Braue
,
W.
,
2009
, “
Environmental Stability of the YSZ Layer and the YSZ/TGO Interface of an In-Service EB-PVD Coated High-Pressure Turbine Blade
,”
J. Mater. Sci.
,
44
(
7
), pp.
1664
1675
.
You do not currently have access to this content.