Abstract

Carburization assisted by laser processing is a promising method to strengthen metallic materials. Direct laser beam carburization is implemented for the first time on thin AISI 430 ferritic stainless steel (FSS) sheets with graphite coating under different conditions. Microstructural morphology, phase constitution, carbon content, microhardness, and tensile behavior are investigated to evaluate the laser carburization effect. The carburized zone presents different morphologies according to the linear energy density of the laser beam. The least carbon content is around 0.4 wt% in the carburized zone where austenite becomes the leading phase. Delta ferrite is found in a cellular carburized area, which resembles a duplex microstructure. The hardness of carburized zone has been at least increased by 130%, the yield strength and ultimate tensile strength of a fully carburized sample can be increased by respectively 90% and 85%. This hardening effect is driven by the precipitation of carbides formed during solidification offering pinning points for dislocations and grain boundaries. These improvements could be useful to modify locally ferritic stainless steel to meet industrial needs such as wear-resistant surfaces.

References

1.
Cashell
,
K. A.
, and
Baddoo
,
N. R.
,
2014
, “
Ferritic Stainless Steels in Structural Applications
,”
Thin-Walled Struct.
,
83
, pp.
169
181
.
2.
Sundqvist
,
J.
,
Manninen
,
T.
,
Heikkinen
,
H.-P.
,
Anttila
,
S.
, and
Kaplan
,
A. F. H.
,
2018
, “
Laser Surface Hardening of 11% Cr Ferritic Stainless Steel and Its Sensitisation Behaviour
,”
Surf. Coat. Technol.
,
344
, pp.
673
679
.
3.
Tadepalli
,
L. D.
,
Gosala
,
A. M.
,
Kondamuru
,
L.
,
Bairi
,
S. C.
,
Subbiah
,
R.
, and
Singh
,
S. K.
,
2020
, “
A Review on Effects of Nitriding of AISI409 Ferritic Stainless Steel
,”
Mater. Today Proc.
,
26
, pp.
1014
1020
.
4.
Hirata
,
T.
,
Yamaguchi
,
T.
,
Yokoyama
,
Y.
, and
Hoshino
,
H.
,
2020
, “
Surface Modification by High-Speed Laser Gas Carburization in Low-Alloy Steel
,”
Mater. Lett.
,
280
, p.
128586
.
5.
Schaaf
,
P.
,
Kahle
,
M.
, and
Carpene
,
E.
,
2005
, “
Reactive Laser Synthesis of Carbides and Nitrides
,”
Appl. Surf. Sci.
,
247
(
1–4
), pp.
607
615
.
6.
Capello
,
E.
, and
Previtali
,
B.
,
2009
, “
Enhancing Dual Phase Steel Formability by Diode Laser Heat Treatment
,”
J. Laser Appl.
,
21
(
1
), pp.
1
9
.
7.
Lapouge
,
P.
,
Dirrenberger
,
J.
,
Coste
,
F.
, and
Schneider
,
M.
,
2019
, “
Laser Heat Treatment of Martensitic Steel and Dual-Phase Steel With High Martensite Content
,”
Mater. Sci. Eng. A
,
752
, pp.
128
135
.
8.
Kennedy
,
E.
,
Byrne
,
G.
, and
Collins
,
D. N.
,
2004
, “
A Review of the Use of High Power Diode Lasers in Surface Hardening
,”
J. Mater. Process. Technol.
,
155–156
, pp.
1855
1860
.
9.
Maharjan
,
N.
,
Zhou
,
W.
, and
Wu
,
N.
,
2020
, “
Direct Laser Hardening of AISI 1020 Steel Under Controlled Gas Atmosphere
,”
Surf. Coat. Technol.
,
385
, p.
125399
.
10.
Höche
,
D.
,
Kaspar
,
J.
, and
Schaaf
,
P.
,
2015
, “Laser Nitriding and Carburization of Materials,”
Laser Surface Engineering
,
J.
Lawrence
and
D. G.
Waugh
, eds.,
Elsevier
,
New York
, pp.
33
58
.
11.
Saleh
,
A. F.
,
Abboud
,
J. H.
, and
Benyounis
,
K. Y.
,
2010
, “
Surface Carburizing of Ti–6Al–4 V Alloy by Laser Melting
,”
Opt. Lasers Eng.
,
48
(
3
), pp.
257
267
.
12.
Seo
,
D. M.
,
Hwang
,
T. W.
, and
Moon
,
Y. H.
,
2019
, “
Carbonitriding of Ti-6Al-4V Alloy Via Laser Irradiation of Pure Graphite Powder in Nitrogen Environment
,”
Surf. Coat. Technol.
,
363
, pp.
244
254
.
13.
Makuch
,
N.
,
Kulka
,
M.
,
Dziarski
,
P.
, and
Przestacki
,
D.
,
2014
, “
Laser Surface Alloying of Commercially Pure Titanium With Boron and Carbon
,”
Opt. Lasers Eng.
,
57
, pp.
64
81
.
14.
Chen
,
Z.
,
Zhou
,
T.
,
Zhao
,
R.-Y.
,
Zhang
,
H.-F.
,
Lu
,
S.-C.
,
Yang
,
W.-S.
, and
Zhou
,
H.
,
2015
, “
Improved Fatigue Wear Resistance of Gray Cast Iron by Localized Laser Carburizing
,”
Mater. Sci. Eng. A
,
644
, pp.
1
9
.
15.
Sui
,
Q.
,
Zhou
,
H.
,
Bao
,
H.
,
Zhang
,
P.
,
Yuan
,
Y.
, and
Meng
,
C.
,
2018
, “
Wear Behavior of Quenched Iron With Various Shapes and Unit Processed Through Two-Step Laser Alloying of C Powder
,”
Opt. Laser Technol.
,
104
, pp.
103
111
.
16.
Tayal
,
M.
, and
Mukherjee
,
K.
,
1994
, “
Selective Area Carburizing of Low Carbon Steel Using an Nd: YAG Laser
,”
Mater. Sci. Eng. A
,
174
(
2
), pp.
231
236
.
17.
Katsamas
,
A. I.
, and
Haidemenopoulos
,
G. N.
,
2001
, “
Laser-Beam Carburizing of Low-Alloy Steels
,”
Surf. Coat. Technol.
,
139
(
2–3
), pp.
183
191
.
18.
Yao
,
J.
,
Zhang
,
Q.
,
Gao
,
M.
, and
Zhang
,
W.
,
2008
, “
Microstructure and Wear Property of Carbon Nanotube Carburizing Carbon Steel by Laser Surface Remelting
,”
Appl. Surf. Sci.
,
254
(
21
), pp.
7092
7097
.
19.
Liu
,
Z.
,
Zhang
,
S.
,
Wang
,
S.
,
Peng
,
Y.
,
Gong
,
J.
, and
Somers
,
M. A. J.
,
2020
, “
On the Fatigue Behavior of Low-Temperature Gaseous Carburized 316L Austenitic Stainless Steel: Experimental Analysis and Predictive Approach
,”
Mater. Sci. Eng. A
,
793
, p.
139651
.
20.
Rovani
,
A. C.
,
Breganon
,
R.
,
de Souza
,
G. S.
,
Brunatto
,
S. F.
, and
Pintaúde
,
G.
,
2017
, “
Scratch Resistance of Low-Temperature Plasma Nitrided and Carburized Martensitic Stainless Steel
,”
Wear
,
376–377
, pp.
70
76
.
21.
Scheuer
,
C. J.
,
Cardoso
,
R. P.
,
Pereira
,
R.
,
Mafra
,
M.
, and
Brunatto
,
S. F.
,
2012
, “
Low Temperature Plasma Carburizing of Martensitic Stainless Steel
,”
Mater. Sci. Eng. A
,
539
, pp.
369
372
.
22.
Wang
,
Z.
,
Dirrenberger
,
J.
,
Lapouge
,
P.
, and
Dubent
,
S.
,
2022
, “
Laser Treatment of 430 Ferritic Stainless Steel for Enhanced Mechanical Properties
,”
Mater. Sci. Eng. A
,
831
, p.
142205
.
23.
Vander Voort
,
G. F.
,
Lucas
,
G. M.
, and
Manilova
,
E. P.
,
2004
, “Metallography and Microstructures of Stainless Steels and Maraging Steels,”
Metallography and Microstructures
,
GF
Vander Voort
, ed.,
ASM International
,
Materials Park, OH
, pp.
670
700
.
24.
Narazaki
,
M.
,
Kogawara
,
M.
,
Ming
,
Q.
, and
Watanabe
,
Y.
,
2009
, “
Measurement and Database Construction of Heat Transfer Coefficients of Gas Quenching
,”
Stroj. Vestn.
,
55
(
3
), pp.
167
173
.
25.
American Welding Society
,
2018
, “
Alloy Composition and Critical Temperatures in Type 410 Steel Welds
,”
Weld. J.
,
97
(
10
), pp.
286
296
.
26.
Capdevila
,
C.
,
Caballero
,
F. G.
, and
de Andrés
,
C. G.
,
2002
, “
Determination of Ms Temperature in Steels: A Bayesian Neural Network Model
,”
ISIJ Int.
,
42
(
8
), pp.
894
902
.
27.
Khalfallah
,
I. Y.
,
Rahoma
,
M. N.
,
Abboud
,
J. H.
, and
Benyounis
,
K. Y.
,
2011
, “
Microstructure and Corrosion Behavior of Austenitic Stainless Steel Treated With Laser
,”
Opt. Laser Technol.
,
43
(
4
), pp.
806
813
.
28.
Hao
,
Y.
,
Li
,
J.
,
Li
,
X.
,
Liu
,
W.
,
Cao
,
G.
,
Li
,
C.
, and
Liu
,
Z.
,
2020
, “
Influences of Cooling Rates on Solidification and Segregation Characteristics of Fe-Cr-Ni-Mo-N Super Austenitic Stainless Steel
,”
J. Mater. Process. Technol.
,
275
, p.
116326
.
29.
Wegrzyn
,
T.
,
1992
, “
Delta Ferrite in Stainless Steel Weld Metals
,”
Weld. Int.
,
6
(
9
), pp.
690
694
.
30.
Nair
,
A. M.
,
Muvvala
,
G.
, and
Nath
,
A. K.
,
2019
, “
A Study on In-Situ Synthesis of TiCN Metal Matrix Composite Coating on Ti–6Al–4 V by Laser Surface Alloying Process
,”
J. Alloys Compd.
,
810
, p.
151901
.
31.
Blecher
,
J. J.
,
Palmer
,
T. A.
, and
DebRoy
,
T.
,
2014
, “
Solidification Map of a Nickel-Base Alloy
,”
Metall. Mater. Trans. A
,
45
(
4
), pp.
2142
2151
.
32.
Berjeza
,
N. A.
,
Velikevitch
,
S. P.
,
Mazhukin
,
V. I.
,
Smurov
,
I.
, and
Flamant
,
G.
,
1995
, “
Influence of Temperature Gradient to Solidification Velocity Ratio on the Structure Transformation in Pulsed- and CW-Laser Surface Treatment
,”
Appl. Surf. Sci.
,
86
(
1–4
), pp.
303
309
.
33.
Li
,
Z.
,
Yu
,
G.
,
He
,
X.
,
Li
,
S.
,
Li
,
H.
, and
Li
,
Q.
,
2019
, “
Study of Thermal Behavior and Solidification Characteristics During Laser Welding of Dissimilar Metals
,”
Results Phys.
,
12
, pp.
1062
1072
.
34.
Jiang
,
P. F.
,
Zhang
,
C. H.
,
Zhang
,
S.
,
Zhang
,
J. B.
,
Chen
,
J.
, and
Liu
,
Y.
,
2020
, “
Microstructure Evolution, Wear Behavior, and Corrosion Performance of Alloy Steel Gradient Material Fabricated by Direct Laser Deposition
,”
J. Mater. Res. Technol.
,
9
(
5
), pp.
11702
11716
.
35.
Zhang
,
H.
,
Zhang
,
C. H.
,
Wang
,
Q.
,
Wu
,
C. L.
,
Zhang
,
S.
,
Chen
,
J.
, and
Abdullah
,
A. O.
,
2018
, “
Effect of Ni Content on Stainless Steel Fabricated by Laser Melting Deposition
,”
Opt. Laser Technol.
,
101
, pp.
363
371
.
36.
Schaeffler
,
A. L.
,
1949
, “
Constitution Diagram for Stainless Steel Weld Metal
,”
Met. Prog.
,
56
(
11
), p.
680
.
You do not currently have access to this content.