Abstract

Single-crystal (SC) nickel-based superalloy castings offer high-temperature mechanical properties that result in superior gas turbine engine performance and durability. These castings undergo various precision machining operations to remove a significant amount of material while manufacturing. Here, nickel-based superalloys are one of the most difficult materials to be cut. Therefore, novel concepts are being employed to improve their machinability including lowering their surface strength. This paper presents the introduction of laser-induced surface damage (LISD) on a second-generation SC nickel-based superalloy using a continuous wave (CW) fiber laser. Laser scanning experiments were performed on SC specimens in the as-cast condition with a laser power of 1000 W, a beam diameter of 1.2 mm, and scanning speeds from 5.5 mm/s to 16.5 mm/s. The cross-sections of the laser-irradiated surfaces were investigated by measuring the irradiated geometries (IRG), microstructural changes, microsegregations, solidification cracking, and heat affected zone (HAZ). The IRG shows the conduction mode of penetration with a high width-to-depth ratio under a bigger beam diameter and top-hat type beam profile. The IRG boundaries have irregular profiles due to the dissolution of interdendrite regions and eutectic phases. The IRG showed fine dendrites and solidification cracks with reduced microsegregation levels. The solidification cracking is mainly attributed to thermal stresses and the microcracking in HAZ is attributed to the dissolution of low melting Mo and Ti eutectics. The evolved HAZ ranges from 15% to 20% of the IRG depth. The LISD volume is evaluated as IRG plus HAZ for removal by machining process.

References

1.
Pollock
,
T. M.
, and
Sammy
,
T.
,
2006
, “
Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties
,”
J. Propul. Power
,
22
(
2
), pp.
361
374
.
2.
Reed
,
C. R.
,
2006
,
The Superalloys: Fundamentals and Applications
,
Cambridge University Press
,
New York
, pp.
1
28
.
3.
Arunachalam
,
R.
, and
Mannan
,
M. A.
,
2000
, “
Machinability of Nickel-Based High Temperature Alloys
,”
Mach. Sci. Technol.
,
4
(
1
), pp.
127
168
.
4.
Akhtar
,
W.
,
Jianefei
,
S.
,
Pengfei
,
S.
,
Wuyi
,
C.
, and
Zawar
,
S.
,
2014
, “
Tool Wear Mechanisms in the Machining of Nickel Based Super-Alloys
,”
Front. Mech. Eng.
,
9
(
2
), pp.
106
119
.
5.
Anderson
,
M.
,
Patwa
,
R.
, and
Shin
,
Y. C.
,
2006
, “
Laser-Assisted Machining of Inconel 718 With an Economic Analysis
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1879
1891
.
6.
Onyszko
,
A.
,
Kubiak
,
K.
, and
Sieniawski
,
J.
,
2009
, “
Turbine Blades of the Single Crystal Nickel Based CMSX-6 Superalloy
,”
J. Achiev. Mater. Manuf. Eng.
,
32
(
1
), pp.
66
69
. www.scientific.net/ssp.203-204.169
7.
Ruppik
,
S.
,
Becker
,
F.
,
Grundmann
,
F. P.
,
Rath
,
W.
, and
Hefter
,
U.
,
2012
, “
High-Power Disk and Fiber Lasers: A Performance Comparison
,”
J. Solid State Laser XXI: Technol. Dev.
,
8235
(
82350V-1
), pp.
1
15
.
8.
Homam
,
N. M.
,
Reza
,
M. A.
,
Hossein
,
S. S.
,
Goodarzi
,
M.
,
Khodabakhshi
,
M.
,
Mapelli
,
C.
, and
Barella
,
S.
,
2014
, “
Modern Fiber Laser Beam Welding of the Newly Designed Precipitation Strengthened Nickel-Based Superalloys
,”
Opt. Laser Technol.
,
57
, pp.
12
20
.
9.
Anderson
,
T. D.
,
Dupont
,
J. N.
, and
Debroy
,
T.
,
2010
, “
Stray Grain Formation in Welds of Single-Crystal Ni-Base Superalloy CMSX-4
,”
Metall. Mater. Trans. A
,
41
(
A
), pp.
181
193
.
10.
Yao
,
J. L.
, and
Wang
,
H. M.
,
2016
, “
Origin of Stray-Grain Formation and Epitaxy Loss at Substrate During Laser Surface Remelting of Single-Crystal Nickel-Base Superalloys
,”
Mater. Des.
,
102
, pp.
297
302
.
11.
Basak
,
A.
,
Holenarasipura Raghu
,
S.
, and
Das
,
S.
,
2017
, “
Microstructures and Microhardness Properties of CMSX-4 Additively Fabricated Through Scanning Laser Epitaxy (SLE)
,”
J. Mater. Eng. Perform.
,
26
(
12
), pp.
5877
5884
.
12.
Carter
,
L. N.
,
Attallah
,
M. M.
, and
Reed
,
R. C.
,
2012
, “Laser Powder Bed Fabrication of Nickel-Base Superalloys: Influence of Parameters; Characterisation, Quantification and Mitigation of Cracking,”
Superalloys 2012: 12th International Symposium on Superalloys
,
S. H.
Eric
,
C. R.
Roger
,
C. H.
Mark
,
J. M.
Michael
,
E. M.
Rick
,
D. P.
Pedro
, and
T.
Jack
, eds.,
TMS
,
Pittsburgh, PA
, pp.
577
586
.
13.
Boris
,
R.
,
Christian
,
N.
,
Stefan
,
K.
, and
Volker
,
W.
,
2017
, “
Laser Cladding for Crack Repair of CMSX-4 Single-Crystalline Turbine Parts
,”
Lasers Manuf. Mater. Process.
,
4
(
1
), pp.
13
23
.
14.
Zhou
,
Z.
,
Huang
,
L.
,
Shang
,
Y.
,
Yunping
,
L.
,
Liang
,
J.
, and
Qian
,
L.
,
2018
, “
Causes Analysis on Cracks in Nickel-Based Single Crystal Superalloy Fabricated by Laser Powder Deposition Additive Manufacturing
,”
Mater. Des.
,
160
, pp.
1238
1249
.
15.
Campanelli
,
S. L.
,
Angelastro
,
A.
,
Posa
,
P.
, and
Daurelio
,
G.
,
2018
, “
Fiber Laser Surface Remelting of a Nickel-Based Superalloy by an Integrated Rectangular Laser Spot
,”
Opt. Lasers Eng.
,
111
, pp.
42
49
.
16.
Xu
,
J.
,
Xin
,
L.
,
Pengfei
,
G.
,
Hongbiao
,
D.
,
Xiaoli
,
W.
,
Qiuge
,
L.
,
Lei
,
X.
, and
Weidong
,
H.
,
2018
, “
The Initiation and Propagation Mechanism of the Overlapping Zone Cracking During Laser Solid Forming of IN-738 LC Superalloy
,”
J. Alloys Compd.
,
749
, pp.
859
870
.
17.
Qiu
,
C.
,
Haoxiu
,
C.
,
Qi
,
L.
,
Sheng
,
Y.
, and
Huaming
,
W.
,
2019
, “
On the Solidification Behaviour and Cracking Origin of a Nickel-Based Superalloy During Selective Laser Melting
,”
Mater. Charact.
,
148
, pp.
330
344
.
18.
Rudolf
,
K.
,
Olga
,
K. K.
,
Ekaterina
,
V.
, and
Ilia
,
U.
,
2020
, “
Investigation of Cracking Causes During Multi-Pass Laser Cladding of Heat Resistant Single Crystal Nickel Alloy
,”
Procedia CIRP
,
94
, pp.
314
319
.
19.
Harris
,
K.
, and
Jacqueline
,
B. W.
,
2004
, “Improved Single Crystal Superalloys, CMSX-4 and CMSX-486,”
Superalloys 2004
,
K. A.
Green
,
T. M.
Pollock
,
H.
Harada
,
T. E.
Howson
,
R. C.
Reed
,
J. J.
Schirra
,
S.
Walston
, eds.,
TMS
,
Pittsburgh, PA
, pp.
45
52
.
20.
Product Catalogue, IPG, Photonics, YLS 3000, 2020. www.ipgphotonics.com
21.
Matache
,
G.
,
Stefanescu
,
D. M.
,
Puscasu
,
C.
, and
Alexandrescu
,
E.
,
2016
, “
Dendritic Segregation and Arm Spacing in Directional Solidified CMSX-4 Superalloy
,”
Int. J. Cast Met. Res.
, pp.
1
18
.
22.
Pang
,
H. T.
,
Dong
,
H. B.
,
Beanland
,
R.
,
Stone
,
H. J.
,
Rae
,
C. M. F.
,
Midgley
,
P. A.
,
Brewster
,
G.
, and
Dsouza
,
N.
,
2009
, “
Microstructure and Solidification Sequence of the Inter Dendritic Region in a Third Generation Single-Crystal Nickel-Base Superalloy
,”
Metall. Mater. Trans. A
,
40
(
7
), pp.
1660
1669
.
23.
Liu
,
Z.
, and
Qj
,
H.
,
2015
, “
Effect of Processing Parameters on Crystal Growth and Microstructure Formation in Laser Powder Deposition of Single-Crystal Superalloy
,”
J. Mater. Process. Technol.
,
216
, pp.
19
27
.
24.
Cormier
,
J.
,
Xavier
,
M.
, and
Jose
,
M.
,
2007
, “
Effect of Very High Temperature Short Exposures on the Dissolution of the γ’ Phase in Single Crystal MC2 Superalloy
,”
J. Mater. Sci.
,
42
(
18
), pp.
7780
7786
.
25.
Szczotok
,
A.
, and
Przeliorz
,
R.
,
2012
, “
Phase Transformation in CMSX-4 Nickel-Based Superalloy
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
35
(
012005
), pp.
1
5
.
26.
Matsushita
,
T.
,
Fecht
,
H. J.
,
Wunderlich
,
R. K.
,
Egry
,
I.
, and
Seetharaman
,
S.
,
2009
, “
Studies of the Thermophysical Properties of Commercial CMSX-4 Alloy
,”
J. Chem. Eng. Data
,
54
(
9
), pp.
2584
2592
.
27.
Gaumann
,
M.
,
Benzencon
,
C.
,
Canalis
,
P.
, and
Kurz
,
W.
,
2001
, “
Single-Crystal Laser Deposition of Superalloys: Processing—Microstructure Maps
,”
Acta Mater.
,
49
(
6
), pp.
1051
1062
.
28.
Wang
,
F.
,
Ma
,
D.
, and
Bührig-Polaczek
,
A.
,
2017
, “
Microsegregation Behavior of Alloying Elements in Single-Crystal Nickel-Based Superalloys With Emphasis on Dendritic Structure
,”
Mater. Charact.
,
127
, pp.
311
316
.
29.
Wang Y
,
L.
,
Oja
,
O. A.
,
Ding
,
R. G.
, and
Chaturvedi
,
M. C.
,
2009
, “
Weld Metal Cracking in Laser Beam Welded Single Crystal Nickel-Based Superalloys
,”
Mater. Sci. Technol.
,
25
(
1
), pp.
68
75
.
30.
Yang
,
S.
,
Huang
,
W.
,
Liu
,
W.
,
Zhong
,
M.
, and
Zhou
,
Y.
,
2002
, “
Development of Microstructures in Laser Surface Remelting of DD2 Single Crystal
,”
Acta Mater.
,
50
(
2
), pp.
315
325
.
31.
Haibo
,
L.
,
Shengcheng
,
M.
,
Yinong
,
L.
,
Zhang
,
Z.
, and
Xiaodong
,
H.
,
2018
, “
Microstructural and Compositional Design of Ni-Based Single Crystalline Superalloys: A Review
,”
J. Alloys Compd.
,
743
, pp.
203
220
.
32.
Schneider
,
M.
,
Berthe
,
L.
,
Fabbro
,
R.
, and
Muller
,
M.
,
2008
, “
Measurement of Laser Absorptivity for Operating Parameters Characteristic of Laser Drilling Regime
,”
J. Phys. D: Appl. Phys.
,
41
(
15
), p.
6
.
33.
Quintino
,
L.
,
Costa
,
A.
,
Miranda
,
R.
,
Yapp
,
D.
,
Kumar
,
V.
, and
Kong
,
C. J.
,
2007
, “
Welding With High Power Fiber Lasers—A Preliminary Study
,”
Mater. Des.
,
28
(
4
), pp.
1231
1237
.
34.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
,”
Trans. ASME
,
68
, pp.
849
866
.
You do not currently have access to this content.