Abstract

A closed-form algebraic expression of the general relationship between film thickness and time during thermal oxidation as attained by Deal and Grove for planar surfaces has remained elusive for surfaces with curvature. Even under a baseline case of constant parameter values to describe oxidant gas-phase transport, diffusion, and reaction, by the conventionally adopted model treating the oxide as fluid capable of flow in accounting for the molecular volume difference between it and the metal from which it was formed and relate the radii describing the oxide relative to those of the metal, numerical integration is required to approximate the time corresponding to any given oxide thickness. Several example sets of such numerical approximation of the relationship between thickness and time by the conventional fluid oxide model on curved cylindrical surfaces are provided here to highlight its lacking closed-form general relationship. In contrast, if instead modeling the oxide as solid and freely expanded from the metal forming it to relate their geometries, it is shown here that a closed-form algebraic expression of the general relationship between oxide thickness and time on cylindrically and in turn spherically curved surfaces is attained in the baseline case of constant parameter values, akin to that preceding by Deal and Grove for planar surfaces. Continuing model refinements will consider dependencies of parameter values on stress state evolving as oxide thickness grows on curved surfaces.

References

1.
Deal
,
B. E.
, and
Grove
,
A. S.
,
1965
, “
General Relationship for the Thermal Oxidation of Silicon
,”
J. Appl. Phys.
,
36
(
12
), pp.
3770
3778
.
2.
Marcus
,
R. B.
, and
Sheng
,
T. T.
,
1982
, “
The Oxidation of Shaped Silicon Surfaces
,”
J. Electrochem. Soc.
,
129
(
6
), pp.
1278
1282
.
3.
Kao
,
D.-B.
,
McVittie
,
J. P.
,
Nix
,
W. D.
, and
Saraswat
,
K. C.
,
1987
, “
Two-Dimensional Thermal Oxidation of Silicon—I. Experiments
,”
IEEE Trans. Electron Devices
,
34
(
5
), pp.
1008
1017
.
4.
Liu
,
H. I.
,
Biegelsen
,
D. K.
,
Ponce
,
F. A.
,
Johnson
,
N. M.
, and
Pease
,
R. F. W.
,
1994
, “
Self-Limiting Oxidation for Fabricating Sub-5 nm Silicon Nanowires
,”
Appl. Phys. Lett.
,
64
(
11
), pp.
1383
1385
.
5.
Okada
,
R.
, and
Iijima
,
S.
,
1991
, “
Oxidation Property of Silicon Small Particles
,”
Appl. Phys. Lett.
,
58
(
15
), pp.
1662
1663
.
6.
Omachi
,
J.
,
Nakamura
,
R.
,
Nishiguchi
,
K.
, and
Oda
,
S.
,
2001
, “
Retardation in the Oxidation Rate of Nanocrystalline Silicon Quantum Dots
,”
Mater. Res. Soc. Symp. Proc.
,
638
, p.
F5.3.1-6
.
7.
Kao
,
D.-B.
,
McVittie
,
J. P.
,
Nix
,
W. D.
, and
Saraswat
,
K. C.
,
1988
, “
Two-Dimensional Thermal Oxidation of Silicon—II. Modeling Stress Effects in Wet Oxides
,”
IEEE Trans. Electron Devices
,
35
(
1
), pp.
25
37
.
8.
Chen
,
Y.
,
2000
, “
Modeling of the Self-Limiting Oxidation for Nanofabrication of Si
,”
Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems
,
San Diego, CA
,
Mar. 27–29
, pp.
56
58
.
9.
Lemme
,
B. D.
,
2009
, “
Non-Planar Silicon Oxidation: An Extension of the Deal-Grove Model
,”
Graduate thesis
,
Kansas State University
,
Manhattan, KS
.
10.
Chen
,
Y.
, and
Chen
,
Y.
,
2001
, “
Modeling Silicon Dots Fabrication Using Self-Limiting Oxidation
,”
Microelectron. Eng.
,
57–58
(
6
), pp.
897
901
.
11.
Coffin
,
H.
,
Bonafos
,
C.
,
Schamm
,
S.
,
Cherkashin
,
N.
,
BenAssayag
,
G.
,
Claverie
,
A.
,
Respaud
,
M.
,
Dimitrakis
,
P.
, and
Normand
,
P.
,
2006
, “
Oxidation of Si Nanocrystals Fabricated by Ultralow-Energy Ion Implantation in Thin SiO2 Layers
,”
J. Appl. Phys.
,
99
(
4
), p.
044302
.
12.
Hsueh
,
C. H.
, and
Evans
,
A. G.
,
1983
, “
Oxidation Induced Stresses and Some Effects on the Behavior of Oxide
,”
J. Appl. Phys.
,
54
(
11
), pp.
6672
6686
.
13.
Collins
,
J. A.
,
2003
,
Mechanical Design of Machine Elements and Machines: A Failure Prevention Perspective
, 1st ed.,
Wiley
,
New York
, pp.
372
374
.
14.
Sutardja
,
P.
,
Oldham
,
W. G.
, and
Kao
,
D.-B.
,
1987
, “
Modeling of Stress-Effects in Silicon Oxidation Including the Non-Linear Viscosity of Oxide
,”
Proceedings of the International Electron Devices Meeting
,
New York
,
Dec. 6–9
, Vol. 33, pp.
264
267
.
15.
Sutardja
,
P.
, and
Oldham
,
W. G.
,
1989
, “
Modeling of Stress-Effects in Silicon Oxidation
,”
IEEE Trans. Electron Devices
,
36
(
11
), pp.
2415
2421
.
You do not currently have access to this content.