Abstract

Post-processing of Ti6Al4V lattice structures fabricated using selective laser melting (SLM) was performed using hot isostatic pressing (HIPing) and heat treatment (HT) to mitigate the undesired effect of rapid cooling during SLM. Oxygen diffusion during post-processing had a significant influence on the microstructure and subsequently the mechanical properties of the lattices. Oxygen content analysis was conducted to confirm the oxygen diffusion through the strurts’ peripheries. The effect of oxygen diffusion during the HIPing and sub-transus HT (600–800 °C) regimes on the phase transformation, failure mechanisms, and mechanical properties of the lattices was investigated. Results revealed that the transformation of the originally formed α′ martensite was dependent on the post-processing temperature. This transformation resulted in a decrease in yield strength. The decrease in failure strain (ductility) for all treated conditions was related to oxygen diffusion, forming near-surface α-case.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids Structure and Properties
, 2nd ed.,
The Press Syndicate of the University of Cambridge
,
Cambridge
.
2.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2019
,
Additive Manufacturing Technologies
, 2nd ed.,
Springer
,
New York
.
3.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B Eng.
,
143
, pp.
172
196
.
4.
Lutjering
,
G.
, and
Williams
,
J.
,
2007
,
Titanium
, 2nd ed.,
Springer
,
New York
.
5.
Leyens
,
C.
, and
Peters
,
M.
,
2013
,
Titanium and Titanium Alloys
,
Wiley-VCH
,
Germany
.
6.
Rafi
,
H. K.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2013
, “
A Comparison of the Tensile, Fatigue, and Fracture Behavior of Ti–6Al–4V and 15-5 pH Stainless Steel Parts Made by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1299
1309
.
7.
Rafi
,
H. K.
,
Karthik
,
N. V.
,
Gong
,
H.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2013
, “
Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting
,”
J. Mater. Eng. Perform.
,
22
(
12
), pp.
3872
3883
.
8.
Agius
,
D.
,
Kourousis
,
K. I.
, and
Wallbrink
,
C.
,
2018
, “
A Review of the As-Built SLM Ti–6Al–4V Mechanical Properties Towards Achieving Fatigue Resistant Designs
,”
Metals (Basel)
,
8
(
1
), p.
75
.
9.
Sallica-leva
,
E.
,
Caram
,
R.
,
Jardini
,
A. L.
, and
Fogagnolo
,
J. B.
,
2016
, “
Ductility Improvement Due to Martensite α' Decomposition in Porous Ti–6Al–4V Parts Produced by Selective Laser Melting for Orthopedic Implants
,”
J. Mech. Behav. Biomed. Mater.
,
54
, pp.
149
158
.
10.
Simonelli
,
M.
,
Tse
,
Y.
, and
Tuck
,
C.
,
2012
, “
Microstructure and Mechanical Properties of Ti–6A1–4V Fabricated by Selective Laser Melting
,”
Miner. Met. Mater. Soc.
,
1
(
13
), pp.
863
870
.
11.
Huang
,
Q.
,
Liu
,
X.
,
Yang
,
X.
,
Zhang
,
R.
,
Shen
,
Z.
, and
Feng
,
Q.
,
2015
, “
Specific Heat Treatment of Selective Laser Melted Ti–6Al–4V for Biomedical Applications
,”
Front. Mater. Sci.
,
9
(
4
), pp.
373
381
.
12.
Karami
,
K.
,
Blok
,
A.
,
Weber
,
L.
,
Ahmadi
,
S. M.
,
Petrov
,
R.
,
Nikolic
,
K.
,
Borisov
,
E. V.
, et al
,
2020
, “
Continuous and Pulsed Selective Laser Melting of Ti6Al4V Lattice Structures: Effect of Post-Processing on Microstructural Anisotropy and Fatigue Behaviour
,”
Addit. Manuf.
,
36
, p.
101433
.
13.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Young
,
P.
,
2015
, “
Ti–6Al–4V Triply Periodic Minimal Surface Structures for Bone Implants Fabricated Via Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
51
, pp.
61
73
.
14.
Velasco-Castro
,
M.
,
Hernández-Nava
,
E.
,
Figueroa
,
I. A.
,
Todd
,
I.
, and
Goodall
,
R.
,
2019
, “
The Effect of Oxygen Pickup During Selective Laser Melting on the Microstructure and Mechanical Properties of Ti–6Al–4V Lattices
,”
Heliyon
,
5
(
12
), p.
e02813
.
15.
Liu
,
S.
, and
Shin
,
Y. C.
,
2019
, “
Additive Manufacturing of Ti6Al4V Alloy: A Review
,”
Mater. Des.
,
164
, p.
107552
.
16.
Li
,
X.
,
Xie
,
J.
, and
Zhou
,
Y.
,
2005
, “
Effects of Oxygen Contamination in the Argon Shielding Gas in Laser Welding of Commercially Pure Titanium Thin Sheet
,”
J. Mater. Sci.
,
40
(
13
), pp.
3437
3443
.
17.
ISO
,
2011
, “International Standard Mechanical Testing of Metals Ductility Testing Compression Test for Porous and Cellular Metals,” ISO 13314(1).
18.
Salem
,
H.
,
Carter
,
L. N.
,
Attallah
,
M. M.
, and
Salem
,
H. G.
,
2019
, “
Influence of Processing Parameters on Internal Porosity and Types of Defects Formed in Ti6Al4V Lattice Structure Fabricated by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
767
, p.
138387
.
19.
Qiu
,
C.
,
Adkins
,
N. J. E.
, and
Attallah
,
M. M.
,
2013
, “
Microstructure and Tensile Properties of Selectively Laser-Melted and of HIPed Laser-Melted Ti–6Al–4V
,”
Mater. Sci. Eng. A
,
578
, pp.
230
239
.
20.
Zhang
,
M.
,
Yang
,
Y.
,
Wang
,
D.
,
Xiao
,
Z.
,
Song
,
C.
, and
Weng
,
C.
,
2018
, “
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Ti6Al4V Gradient Structures Manufactured by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
736
, pp.
288
297
.
21.
Casadebaigt
,
A.
,
Hugues
,
J.
, and
Monceau
,
D.
,
2020
, “
High Temperature Oxidation and Embrittlement at 500–600 °C of Ti–6Al–4V Alloy Fabricated by Laser and Electron Beam Melting
,”
Corros. Sci.
,
175
, p.
108875
.
22.
Dong
,
E.
,
Yu
,
W.
, and
Cai
,
Q.
,
2017
, “
Alpha-Case Kinetics and High Temperature Plasticity of Ti–6Al–4V Alloy Oxidized in Different Phase Regions
,”
Procedia Eng.
,
207
, pp.
2149
2154
.
23.
Gaddam
,
R.
,
Sefer
,
B.
,
Pederson
,
R.
, and
Antti
,
M.
,
2015
, “
Materials Characterization Oxidation and Alpha-Case Formation in Ti – 6Al – 2Sn – 4Zr – 2Mo Alloy
,”
Mater. Charact.
,
99
, pp.
166
174
.
24.
Wauthle
,
R.
,
Vrancken
,
B.
,
Beynaerts
,
B.
,
Jorissen
,
K.
,
Schrooten
,
J.
,
Kruth
,
J.
,
Van Humbeeck
,
J.
,
Vrancken
,
B.
,
Beynaerts
,
B.
, and
Jorissen
,
K.
,
2015
, “
Effects of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4V Lattice Structures
,”
Addit. Manuf.
,
5
, pp.
77
84
.
25.
Yan
,
X.
,
Lupoi
,
R.
,
Wu
,
H.
,
Ma
,
W.
,
Liu
,
M.
, and
O'Donnell
,
G.
,
2019
, “
Effect of Hot Isostatic Pressing (HIP) Treatment on the Compressive Properties of Ti6Al4V Lattice Structure Fabricated by Selective Laser Melting
,”
Mater. Lett.
,
255
, p.
126537
.
26.
Zhao
,
X.
,
Li
,
S.
,
Zhang
,
M.
,
Liu
,
Y.
,
Sercombe
,
T.
,
Wang
,
S.
,
Hao
,
Y.
,
Yang
,
R.
, and
Murr
,
L.
,
2016
, “
Comparison of the Microstructures and Mechanical Properties of Ti6Al4V Fabricated by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
95
, pp.
21
31
.
27.
Kadkhodapour
,
J.
,
Montazerian
,
H.
,
Darabi
,
A. C.
, and
Anaraki
,
A. P.
,
2015
, “
Failure Mechanisms of Additively Manufactured Porous Biomaterials : Effects of Porosity and Type of Unit Cell
,”
J. Mech. Behav. Biomed. Mater.
,
50
, pp.
180
191
.
28.
Vilaro
,
T.
,
Colin
,
C.
, and
Bartout
,
J. D.
,
2011
, “
As-Fabricated and Heat-Treated Microstructures of the Ti–6Al–4V Alloy Processed by Selective Laser Melting
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
42
(
10
), pp.
3190
3199
.
You do not currently have access to this content.