Abstract

Origami-based sheet metal (OSM) bending uses the origami concept to form three-dimensional (3D) structures from a two-dimensional (2D) sheet by performing a series of bending operations. The OSM bending relies on material discontinuity (MD) lines to perform the bending operation during which the MDs are subjected to tension and shear load. Even though OSM bending is a process that is simple, cost-effective, and easy to integrate into mass production, the understanding of the OSM bending mechanics is limiting its wide application. Particularly, the deformation behavior of MDs under tension and shear load remains unknown. Hence, this study investigates the response of MDs to these loads using the standard tensile and shear tests. From these tests, the critical values for two different ductile fracture criteria (DFC) models are determined, and the possibility of a failure occurring in OSM bending can be predicted using the DFC models and the critical values. Results show that the load-bearing capability of the MDs is related to change in the effective cross-sectional area of an MD. The tensile and shear tests can provide a technique to predict failure in OSM bending. The results also show that the self-contact that can occur under shear load influences the maximum shear force and the accuracy of failure prediction.

References

1.
Lang
,
R. J.
,
Tolman
,
K.
,
Crampton
,
E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Accommodating Thickness in Origami-Inspired Engineered Systems
,”
ASME Appl. Mech. Rev.
,
70
, pp.
1
20
.
2.
De Temmerman
,
N.
,
Roovers
,
K.
,
Alegria Mira
,
L.
,
Vergauwen
,
A.
,
Koumar
,
A.
,
Brancart
,
S.
,
De Laet
,
L.
, and
Mollaert
,
M.
,
2014
, “
Lightweight Transformable Structures: Materialising the Synergy Between Architectural and Structural Engineering
,”
WIT Trans. Built Environ.
,
136
, pp.
2
20
.
3.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
40
), pp.
12321
12326
.
4.
Thrall
,
A. P.
, and
Quaglia
,
C. P.
,
2014
, “
Accordion Shelters: A Historical Review of Origami-Like Deployable Shelters Developed by the US Military
,”
Eng. Struct.
,
59
, pp.
686
692
.
5.
Martínez-Martín
,
F. J.
, and
Thrall
,
A. P.
,
2014
, “
Honeycomb Core Sandwich Panels for Origami-Inspired Deployable Shelters: Multi-Objective Optimization for Minimum Weight and Maximum Energy Efficiency
,”
Eng. Struct.
,
69
, pp.
158
167
.
6.
Shi
,
Q.
,
Shi
,
X.
,
Gattas
,
J. M.
, and
Kitipornchai
,
S.
,
2017
, “
Folded Assembly Methods for Thin-Walled Steel Structures
,”
J. Constr. Steel Res.
,
138
, pp.
235
245
.
7.
Li
,
Z.
,
Chen
,
W.
,
Hao
,
H.
,
Yang
,
Q.
, and
Fang
,
R.
,
2020
, “
Energy Absorption of Kirigami Modified Corrugated Structure
,”
Thin-Walled Struct.
,
154
, p.
106829
.
8.
Venhovens
,
P.
,
Bell
,
K.
,
Marathe
,
P.
,
Patkar
,
A.
,
Lamance
,
F.
,
Lind
,
D.
, and
Amico
,
C. D.
,
2013
, “
Application of a Novel Metal Folding Technology for Automotive BiW Design
,”
SAE Int. J. Passeng. Cars—Mech. Syst.
,
6
(
2
), pp.
584
600
.
9.
Qattawi
,
A.
,
Mayyas
,
A.
, and
Omar
,
M. A.
,
2013
, “
An Investigation of Graph Traversal Algorithms in Folded Sheet Metal Parts Design
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
2237
2246
.
10.
Qattawi
,
A.
,
Mayyas
,
A.
,
Thiruvengadam
,
H.
,
Kumar
,
V.
,
Dongri
,
S.
, and
Omar
,
M.
,
2014
, “
Design Considerations of Flat Patterns Analysis Techniques When Applied for Folding 3-D Sheet Metal Geometries
,”
J. Intell. Manuf.
,
25
(
1
), pp.
109
128
.
11.
Durney
,
M. W.
, and
Pendley
,
A. D.
,
2013
, “
Precision-Folded, High Strength, Fatigue-Resistant Structures and Sheet Therefor
,” US 8,377,566 B2.
12.
Gitlin
,
B.
,
Kveton
,
A.
, and
Lalvani
,
J.
,
2002
, “
Method of Bending Sheet Metal to Form Three-Dimensional Structures
,” pp.
1
35
.
13.
Ablat
,
M. A.
,
Qattawi
,
A.
,
Jaman
,
M. S.
,
Alafaghani
,
A.
,
Yau
,
C.
,
Soshi
,
M.
, and
Sun
,
J.-Q.
,
2020
, “
An Experimental and Analytical Model for Force Prediction in Sheet Metal Forming Process Using Perforated Sheet and Origami Principles
,”
Procedia Manuf.
,
48
, pp.
407
418
.
14.
Qattawi
,
A.
,
Abdelhamid
,
M.
,
Mayyas
,
A.
, and
Omar
,
M.
,
2014
, “
Design Analysis for Origami-Based Folded Sheet Metal Parts
,”
SAE Int. J. Mater. Manuf.
,
7
(
2
), pp.
488
498
.
15.
Qattawi
,
A.
,
2012
, “
Extending Origami Technique to Fold Forming of Sheet Metal
,”
PhD dissertation
,
Clemson University
,
Clemson, SC
.
16.
Ablat
,
M. A.
, and
Qattawi
,
A.
,
2018
, “
Finite Element Analysis of Origami-Based Sheet Metal Folding Process
,”
ASME J. Eng. Mater. Technol.
,
140
(
3
), p.
031008
.
17.
Boljanovic
,
V.
,
2004
,
Sheet Metal Forming Processes and Die Design
,
Industrial Press
,
New York
.
18.
Paunoiu
,
V.
,
Saadatou
,
M. A.
,
Nedelcu
,
D.
, and
Octavian
,
M.
,
2015
, “
Experimental and Numerical Investigations of Sheet Metal Circular Bending
,”
Indian J. Eng. Mater. Sci.
,
22
(
5
), pp.
487
496
.
19.
Fu
,
Z.
,
Tian
,
X.
,
Chen
,
W.
,
Hu
,
B.
, and
Yao
,
X.
,
2013
, “
Analytical Modeling and Numerical Simulation for Three-Roll Bending Forming of Sheet Metal
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1639
1647
.
20.
Gupta
,
S. K.
,
Bourne
,
D. A.
,
Kim
,
K. H.
, and
Krishnan
,
S. S.
,
1998
, “
Automated Process Planning for Sheet Metal Bending Operations
,”
J. Manuf. Syst.
,
17
(
5
), pp.
338
360
.
21.
Kuo
,
C. C.
, and
Li
,
M. R.
,
2016
, “
A Cost-Effective Method for Rapid Manufacturing Sheet Metal Forming Dies
,”
Int. J. Adv. Manuf. Technol.
,
85
(
9–12
), pp.
2651
2656
.
22.
Ablat
,
M. A.
, and
Qattawi
,
A.
,
2019
, “
Investigating the Design and Process Parameters of Folded Perforated Sheet Metal
,”
Int. J. Adv. Manuf. Technol.
, pp.
615
633
.
23.
Ablat
,
M. A.
, and
Qattawi
,
A.
,
2016
, “
Finite Element Analysis of Origami-Based Sheet Metal Folding Process
,”
Proceedings of the ASME 2016 International Mechanical Engineering Congress & Exposition
,
Phoenix, AZ
,
Nov. 11–17
, pp.
1
7
.
24.
Pilkey
,
W. D.
,
Pilkey
,
D. F.
, and
Peterson
,
R. E.
,
2008
,
Peterson’s Stress Concentration Factors
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
25.
Kang
,
J.
,
Wilkinson
,
D. S.
,
Wu
,
P. D.
,
Bruhis
,
M.
,
Jain
,
M.
,
Embury
,
J. D.
, and
Mishra
,
R. K.
,
2008
, “
Constitutive Behavior of AA5754 Sheet Materials at Large Strains
,”
ASME J. Eng. Mater. Technol.
,
130
(
3
), p.
031004
.
26.
Codolini
,
A.
,
Li
,
Q. M.
, and
Wilkinson
,
A.
,
2018
, “
Mechanical Characterization of Thin Injection-Moulded Polypropylene Specimens Under Large In-Plane Shear Deformations
,”
Polym. Test.
,
69
, pp.
485
489
.
27.
Nunes
,
L. C. S.
,
2015
, “
Modified Slotted Shear Test for a Thin Sheet of Solid Polymer Under Large Deformations
,”
Polym. Test.
,
45
, pp.
20
30
.
28.
Yin
,
Q.
,
Zillmann
,
B.
,
Suttner
,
S.
,
Gerstein
,
G.
,
Biasutti
,
M.
,
Tekkaya
,
A. E.
,
Wagner
,
M. F. X.
, et al
,
2014
, “
An Experimental and Numerical Investigation of Different Shear Test Configurations for Sheet Metal Characterization
,”
Int. J. Solids Struct.
,
51
(
5
), pp.
1066
1074
.
29.
Peirs
,
J.
,
Verleysen
,
P.
, and
Degrieck
,
J.
,
2012
, “
Novel Technique for Static and Dynamic Shear Testing of Ti6Al4V Sheet
,”
Exp. Mech.
,
52
(
7
), pp.
729
741
.
30.
Torabi
,
A. R.
, and
Alaei
,
M.
,
2015
, “
Mixed-Mode Ductile Failure Analysis of V-Notched Al 7075-T6 Thin Sheets
,”
Eng. Fract. Mech.
,
150
, pp.
70
95
.
31.
ASTM International
,
2009
, “
ASTM E8/E8M-13 Standard Test Methods for Tension Testing of Metallic Materials
,” ASTM, pp.
1
27
.
32.
Rivets
,
A.
,
Wire
,
C.
, and
Systems
,
M.
,
1964
,
Standard Test Method for Shear Testing of Thin Aluminum Alloy Products
,
ASTM International
,
West Conshohocken, PA
.
33.
Tong
,
W.
,
2013
, “
Formulation of Lucas-Kanade Digital Image Correlation Algorithms for Non-Contact Deformation Measurements: A Review
,”
Strain
,
49
(
4
), pp.
313
334
.
34.
Wang
,
K.
,
Carsley
,
J. E.
,
He
,
B.
,
Li
,
J.
, and
Zhang
,
L.
,
2014
, “
Measuring Forming Limit Strains With Digital Image Correlation Analysis
,”
J. Mater. Process. Technol.
,
214
(
5
), pp.
1120
1130
.
35.
Nguyen
,
V. T.
,
Kwon
,
S. J.
,
Kwon
,
O. H.
, and
Kim
,
Y. S.
,
2017
, “
Mechanical Properties Identification of Sheet Metals by 2D-Digital Image Correlation Method
,”
Procedia Eng.
,
184
(
Dic
), pp.
381
389
.
36.
Paul
,
S. K.
,
Roy
,
S.
,
Sivaprasad
,
S.
,
Bar
,
H. N.
, and
Tarafder
,
S.
,
2018
, “
Identification of Post-Necking Tensile Stress–Strain Behavior of Steel Sheet: An Experimental Investigation Using Digital Image Correlation Technique
,”
J. Mater. Eng. Perform.
,
27
(
11
), pp.
5736
5743
.
37.
Wierzbicki
,
T.
,
Bao
,
Y.
,
Lee
,
Y. W.
, and
Bai
,
Y.
,
2005
, “
Calibration and Evaluation of Seven Fracture Models
,”
Int. J. Mech. Sci.
,
47
(
4–5
SPEC. ISS.), pp.
719
743
.
38.
Hu
,
Q.
,
Zhang
,
F.
,
Li
,
X.
, and
Chen
,
J.
,
2018
, “
Overview on the Prediction Models for Sheet Metal Forming Failure: Necking and Ductile Fracture
,”
Acta Mech. Solida Sin.
,
31
(
3
), pp.
259
289
.
You do not currently have access to this content.