Abstract

Austenitic stainless steel is a widely used engineering material in industry and daily life due to its excellent corrosion resistance. The construction of superhydrophobic structure on stainless steel can endow it with special wetting properties and open up new paths for its application. In this study, stainless steel plate was first etched in a hydrofluoric acid solution with a low concentration of 40 wt%, and a micro-nano structure was obtained in a short time of 2 h. The surface was then modified in myristic acid to achieve superhydrophobicity. The superhydrophobic structure on the steel showed a high contact angle (CA) of 166 deg, excellent self-cleaning performance, and greatly improved corrosion resistance compared with the original counterpart. Meanwhile, its wear durability was evaluated by sandpaper abrasion test and the superhydrophobic structure maintained its property after moving 125 cm on the 1000-grit sandpaper under a pressure of 3.2 kPa.

References

1.
Sun
,
T.
,
Feng
,
L.
, and
Gao
,
X.
,
2005
, “
Bioinspired Surfaces With Special Wettability
,”
Acc. Chem. Res.
,
38
(
8
), pp.
644
652
.
2.
Milionis
,
A.
,
Loth
,
E.
, and
Bayer
,
I. S.
,
2016
, “
Recent Advances in the Mechanical Durability of Superhydrophobic Materials
,”
Adv. Colloid Interface Sci.
,
229
, pp.
57
59
.
3.
Roach
,
P.
,
Shirtcliffe
,
N. J.
, and
Newton
,
M. I.
,
2008
, “
Progress in Superhydrophobic Surface Development
,”
Soft Matter
,
4
(
2
), pp.
224
240
.
4.
Ahuja
,
A.
,
Taylor
,
J. A.
, and
Lifton
,
V.
,
2008
, “
Nanonails: A Simple Geometrical Approach to Electrically Tunable Superlyophobic Surfaces
,”
Langmuir
,
24
(
1
), pp.
9
14
.
5.
Ma
,
M.
,
Mao
,
Y.
, and
Gupta
,
M.
,
2005
, “
Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition
,”
Macromolecules
,
38
(
23
), pp.
9742
9748
.
6.
Bormashenko
,
E.
,
Stein
,
T.
, and
Whyman
,
G.
,
2006
, “
Wetting Properties of the Multiscaled Nanostructured Polymer and Metallic Superhydrophobic Surfaces
,”
Langmuir
,
22
(
24
), pp.
9982
9985
.
7.
Shiu
,
J. Y.
,
Kuo
,
C. W.
, and
Chen
,
P.
,
2004
, “
Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography
,”
Chem. Mater.
,
16
(
4
), pp.
561
564
.
8.
Nakajima
,
A.
,
Hashimoto
,
K.
, and
Watanabe
,
T.
,
2000
, “
Transparent Superhydrophobic Thin Films With Self-Cleaning Properties
,”
Langmuir
,
16
(
17
), pp.
7044
7047
.
9.
Nakajima
,
A.
,
Fujishima
,
A.
, and
Hashimoto
,
K.
,
2010
, “
ChemInform Abstract: Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate
,”
ChemInform.
,
31
(
1
), pp.
1365
1368
.
10.
Liu
,
K.
, and
Jiang
,
L.
,
2011
, “
Metallic Surfaces With Special Wettability
,”
Nanoscale
,
3
(
3
), pp.
825
838
.
11.
Fürstner
,
R.
,
Barthlott
,
W.
, and
Neinhuis
,
C.
,
2005
, “
Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces
,”
Langmuir
,
21
(
3
), pp.
956
961
.
12.
Lafuma
,
A.
, and
Quéré
,
D.
,
2003
, “
Superhydrophobic States
,”
Nat. Mater.
,
2
(
7
), pp.
457
460
.
13.
Shirtcliffe
,
N. J.
,
McHale
,
G.
,
Newton
,
M. I.
, and
Zhang
,
Y.
,
2009
, “
Superhydrophobic Copper Tubes With Possible Flow Enhancement and Drag Reduction
,”
ACS Appl. Mater.
,
1
(
6
), pp.
1316
1323
.
14.
Ou
,
J.
, and
Rothstein
,
J. P.
,
2005
, “
Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
17
(
10
), pp.
103606
103607
.
15.
Choi
,
C. H.
, and
Kim
,
C. J.
,
2006
, “
Large Slip of Aqueous Liquid Flow Over a Nanoengineered Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
97
(
10
), pp.
109601
109602
.
16.
Liu
,
H.
,
Szunerits
,
S.
, and
Xu
,
W.
,
2009
, “
Preparation of Superhydrophobic Coatings on Zinc as Effective Corrosion Barriers
,”
ACS Appl. Mater.
,
1
(
6
), pp.
1150
1153
.
17.
Liu
,
T.
,
Chen
,
S.
, and
Cheng
,
S.
,
2007
, “
Corrosion Behavior of Super-Hydrophobic Surface on Copper in Seawater
,”
Electrochim. Acta
,
52
(
28
), pp.
8003
8007
.
18.
Sagalowicz
,
L.
,
Mezzenga
,
R.
, and
Leser
,
M.
,
2006
, “
Investigating Reversed Liquid Crystalline Mesophases
,”
Curr. Opin. Colloid Interface Sci.
,
11
(
4
), pp.
224
229
.
19.
Qian
,
B.
, and
Shen
,
Z.
,
2005
, “
Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates
,”
Langmuir
,
21
(
20
), pp.
9007
9009
.
20.
Plaut
,
R. L.
,
Herrera
,
C.
, and
Escriba
,
D. M.
,
2007
, “
A Short Review on Wrought Austenitic Stainless Steels at High Temperatures: Processing, Microstructure, Properties and Performance
,”
Mater. Res.
,
10
(
4
), pp.
453
460
.
21.
Lee
,
C.
,
Kim
,
A.
, and
Kim
,
J.
,
2015
, “
Electrochemically Etched Porous Stainless Steel for Enhanced Oil Retention
,”
Surf. Coat. Technol.
,
264
, pp.
127
131
.
22.
Burstein
,
G. T.
,
Liu
,
C.
, and
Souto
,
R. M.
,
2004
, “
Origins of Pitting Corrosion
,”
Corros. Eng., Sci. Technol.
,
39
(
1
), pp.
25
30
.
23.
Ryan
,
M. P.
,
Williams
,
D. E.
, and
Chater
,
R. J.
,
2002
, “
Why Stainless Steel Corrodes
,”
Nature
,
415
(
6873
), pp.
770
774
.
24.
Jin
,
M.
,
Feng
,
X.
, and
Feng
,
L.
,
2005
, “
Superhydrophobic Aligned Polystyrene Nanotube Films With High Adhesive Force
,”
Adv.Mater.
,
17
(
16
), pp.
1977
1981
.
25.
Bellanger
,
H.
, and
Darmanin
,
T.
,
2014
, “
Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories
,”
Chem. Rev.
,
114
(
5
), pp.
2694
2716
.
26.
Sanjay
,
S.
, and
Devadoss
,
A.
,
2015
, “
A Mechanically Bendable Superhydrophobic Steel Surface With Self-Cleaning and Corrosion-Resistant Properties
,”
J. Mater. Chem. A.
,
3
(
27
), pp.
14263
14271
.
27.
Nanda
,
D.
,
Sahoo
,
A.
, and
Kumar
,
A.
,
2019
, “
Facile Approach to Develop Durable and Reusable Superhydrophobic/Superoleophilic Coatings for Steel Mesh Surfaces
,”
J. Colloid Interface Sci.
,
535
, pp.
50
57
.
28.
Kim
,
J. H.
,
Mirzaei
,
A.
, and
Woo Kim
,
H.
,
2018
, “
Facile Fabrication of Superhydrophobic Surfaces From Austenitic Stainless Steel (AISI 304) by Chemical Etching
,”
Appl. Surf. Sci.
,
439
, pp.
598
604
.
29.
Callow
,
J. A.
, and
Callow
,
M. E.
,
2011
, “
Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings
,”
Nat. Commun.
,
2
(
1
), pp.
244
245
.
30.
Wang
,
N.
,
Xiong
,
D.
, and
Deng
,
Y.
,
2015
, “
Mechanically Robust Superhydrophobic Steel Surface With Anti-Icing, UV-Durability, and Corrosion Resistance Properties
,”
ACS Appl. Mater.
,
7
(
11
), pp.
6260
6272
.
31.
Lee
,
C.
,
Choi
,
C. H.
, and
Kim
,
C. J.
,
2016
, “
Superhydrophobic Drag Reduction in Laminar Flows: A Critical Review
,”
Exp Fluids.
,
57
(
12
), pp.
176
177
.
32.
Geraldi
,
N. R.
,
Dodd
,
L. E.
, and
Xu
,
B.
,
2017
, “
Drag Reduction Properties of Superhydrophobic Mesh Pipes
,”
Surf. Topogr.
,
5
(
3
), pp.
034001
034001
.
33.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans Faraday Soc.
,
40
, pp.
546
551
.
34.
Xu
,
L.
,
Wang
,
L.
, and
Shen
,
Y.
,
2015
, “
Preparation of Hexadecyltrimethoxysilane-Modified Silica Nanocomposite Hydrosol and Superhydrophobic Cotton Coating
,”
Fiber Polym.
,
16
(
5
), pp.
1082
1091
.
35.
Li
,
C.
,
Ma
,
R.
, and
Du
,
A.
,
2019
, “
One-Step Fabrication of Bionic Superhydrophobic Coating on Galvanised Steel With Excellent Corrosion Resistance
,”
J. Alloys Compd.
,
786
, pp.
272
283
.
36.
Gao
,
X.
, and
Guo
,
Z.
,
2018
, “
Mechanical Stability, Corrosion Resistance of Superhydrophobic Steel and Repairable Durability of Its Slippery Surface
,”
J. Colloid Interface Sci.
,
512
, pp.
239
248
.
You do not currently have access to this content.