Abstract

Plastic deformation in metals is dominated by the interactions among dislocations and other defects inside the crystal. A large number of dislocation multipoles (dipoles, tripoles, quadrupoles, etc.) can form during plastic deformation. Depending on the relative position and the orientation of the dislocations, interactions in and between multipoles can change the elastoplastic properties of a material. The authors of this article investigate the effect of dislocation multipoles on the elastoplastic properties of a material. This is performed analytically under different multipole configurations (i.e., the distance between active glide planes and the signs of the dislocations) as well as using a three-dimensional discrete dislocation dynamics (DDD) code. The simulations show that multipoles exhibit a hardening/softening effect when the sign of the dislocations involved is the same, and a hardening effect only when the dislocations are of opposite sign to nearby ones. The distance between the two neighboring dislocations was also affecting the proportional limit (PL) for the material. Such hardening or flow stress (FS) results, as in this study, can be incorporated into larger-scale modeling work.

References

1.
Gilman
,
J. J.
,
1964
, “
Influence of Dislocation Dipoles on Physical Properties
,”
R. Soc. Chem.
,
38
, pp.
123
137
.
2.
Stokes
,
R. J.
, and
Olsen
,
K. H.
,
1963
, “
Dislocation Interactions and Dipole Formation
,”
Philos. Mag.
,
8
(
90
), pp.
957
965
.
3.
Kroupa
,
F.
,
1966
, “
Dislocation Dipoles and Dislocation Loops
,”
Le Journal de Physique Colloques
,
27
(
C3
), pp.
C3-154
C3-167
.
4.
Neumann
,
P. D.
,
1971
, “
The Interactions Between Dislocations and Dislocation Dipoles
,”
Acta Metall.
,
19
(
11
), pp.
1233
1241
.
5.
Kubin
,
L. P.
,
Canova
,
G.
,
Condat
,
M.
,
Devincre
,
B.
,
Pontikis
,
V.
, and
Brechet
,
Y.
,
1992
, “
Dislocation Microstructures and Plastic Flow: A 3D Simulation
,”
Solid State Phenom.
,
23–24
, pp.
455
472
.
6.
Zbib
,
H. M.
,
Rhee
,
M.
, and
Hirth
,
J. P.
,
1998
, “
On Plastic Deformation and the Dynamics of 3D Dislocations
,”
Int. J. Mech. Sci.
,
40
(
2–3
), pp.
113
127
.
7.
De La Rubia
,
T. D.
,
Zbib
,
H. M.
,
Khraishi
,
T. A.
,
Wirth
,
B. D.
,
Victoria
,
M.
, and
Caturla
,
M. J.
,
2000
, “
Multiscale Modelling of Plastic Flow Localization in Irradiated Materials
,”
Nature
,
406
(
6798
), pp.
871
874
.
8.
Khraishi
,
T. A.
,
Zbib
,
H. M.
,
de La Rubia
,
T. D.
, and
Victoria
,
M.
,
2002
, “
Localized Deformation and Hardening in Irradiated Metals: Three-Dimensional Discrete Dislocation Dynamics Simulations
,”
Metall. Mater. Trans. B
,
33
(
2
), pp.
285
296
.
9.
Yan
,
L.
,
Khraishi
,
T. A.
,
Shen
,
Y.-L.
, and
Horstemeyer
,
M. F.
,
2004
, “
A Distributed-Dislocation Method for Treating Free-Surface Image Stresses in 3D Dislocation Dynamics Simulations
,”
Modell. Simul. Mater. Sci. Eng.
,
12
(
4
), pp.
S289
S301
.
10.
Jing
,
P.
,
Khraishi
,
T.
,
Young
,
J. A.
, and
Wirth
,
B. D.
,
2005
, “
Multi-Scale Simulations of the Effects of Irradiation-Induced Voids and Helium Bubbles on the Mechanical Properties of Aluminum
,”
Philos. Mag.
,
85
(
4–7
), pp.
757
767
.
11.
Khraishi
,
T. A.
, and
Zbib
,
H. M.
,
2002
, “
Dislocation Dynamics Simulations of the Interaction Between a Short Rigid Fiber and a Glide Circular Dislocation Pile-up
,”
Comput. Mater. Sci.
,
24
(
3
), pp.
294
306
.
12.
Siddique
,
A. B.
, and
Khraishi
,
T.
,
2020
, “
Numerical Methodology for Treating Static and Dynamic Dislocation Problems Near a Free Surface
,”
J. Phys. Commun.
,
4
(
5
), p.
055005
.
13.
Siddique
,
A. B.
, and
Khraishi
,
T.
,
2021
, “
A Mesh-Independent Brute-Force Approach for Traction-Free Corrections in Dislocation Problems
,”
Model. Numer. Simul. Mater. Sci.
,
11
(
1
), pp.
1
18
.
14.
Siddique
,
A. B.
, and
Khraishi
,
T.
,
2021
, “
The Treatment of Singularities Associated With a Dislocation Segment With Applications
,”
Int. J. Theor. Appl. Multiscale Mech.
(in press).
15.
Rhee
,
M.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
,
Huang
,
H.
, and
Rubia
,
T. D.
,
1998
, “
Models for Long-/Short-Range Interactions and Cross Slip in 3D Dislocation Simulation of BCC Single Crystals
,”
Modelling Simul. Mater. Sci. Eng.
,
6
(
4
), pp.
467
492
.
16.
Frank
,
F. C.
, and
Read
,
W. T.
,
1950
, “
Multiplication Processes for Slow Moving Dislocations
,”
Phys. Rev.
,
79
(
4
), pp.
722
273
.
17.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
,
John Wiley & Sons
,
New York
.
18.
Hull
,
D.
, and
Bacon
,
D. J.
,
2011
,
Introduction to Dislocations
,
Butterworth-Heinemann
,
New York
.
19.
Weertman
,
J.
, and
Weertman
,
J. R.
,
1992
,
Elementary Dislocation Theory
,
Oxford University Press
,
Oxford
.
20.
Cottrell
,
A. H.
,
1953
,
Dislocations and Plastic Flow in Crystals
,
Oxford University Press
,
Oxford
, p.
48
.
21.
Dieter
,
G. E.
, and
Bacon
,
D. J.
,
1976
,
Mechanical Metallurgy
, 3rd ed.,
McGraw-Hill, New York
. p.
167
.
You do not currently have access to this content.