Abstract

Yield point phenomena (YPP) are widely attributed to discrete dislocation locking by solute atmospheres. An alternate YPP mechanism was recently suggested by simulations of Ta single crystals without any influence of solutes or discrete dislocations. The general meso-scale (GM) simulations consist of crystal plasticity (CP) plus accounting for internal stresses of geometrically necessary dislocation content. GM predicted the YPP while CP did not, suggesting a novel internal stress mechanism. The predicted YPP varied with crystal orientation and boundary conditions, contrary to expectations for a solute mechanism. The internal stress mechanism was probed by experimentally deforming oligocrystal Ta samples and comparing the results with independent GM simulations. Strain distributions of the experiments were observed with high-resolution digital image correlation. A YPP stress–strain response occurred in the 0–2% strain range in agreement with GM predictions. Shear bands appeared concurrent with the YPP stress–strain perturbation in agreement with GM predictions. At higher strains, the shear bands grew at progressively slower rates in agreement with GM predictions. It was concluded that the internal stress mechanism can account for the existence of YPP in a wide variety of materials including ones where interstitial-dislocation interactions and dislocation transient avalanches are improbable. The internal stress mechanism is a CP analog of various micro-scale mechanisms of discrete dislocations such as pile-up or bow-out. It may operate concurrently with strain aging, or either mechanism may operate alone. A suggestion was made for a future experiment to answer this question.

References

1.
Hasegawa
,
T.
, and
Yakou
,
T.
,
1974
, “
Region of Constant Flow Stress During Compression of Aluminium Polycrystals Prestrained by Tension
,”
Scr. Metall.
,
8
(
8
), pp.
951
954
.
2.
Hasegawa
,
T.
,
Yakou
,
T.
, and
Karashima
,
S.
,
1975
, “
Deformation Behaviour and Dislocation Structures Upon Stress Reversal in Polycrystalline Aluminium
,”
Mater. Sci. Eng.
,
20
, pp.
267
276
.
3.
Yakou
,
T.
,
Hasegawa
,
T.
, and
Karashima
,
S.
,
1985
, “
Stagnation of Strain Hardening During Reversed Straining of Prestrained Aluminium, Copper and Iron
,”
Trans. Jpn. Inst. Met.
,
26
(
2
), pp.
88
93
.
4.
Portevin
,
A.
, and
Le Châtelier
,
F. C. R.
,
1923
, “
Sur un phénomène observé lors de l'essai de traction d'alliages en cours de transformation
,”
Comptes Rendus Acad. Sci. Paris
,
176
, p.
507
.
5.
Zhou
,
G.
,
Jeong
,
W.
,
Homer
,
E. R.
,
Fullwood
,
D. T.
,
Lee
,
M. G.
,
Kim
,
J. H.
,
Lim
,
H.
,
Zbib
,
H.
, and
Wagoner
,
R. H.
,
2020
, “
A Predictive Strain-Gradient Model With No Undetermined Constants or Length Scales
,”
J. Mech. Phys. Solids
,
145
, p.
104178
.
6.
Cottrell
,
A. H.
, and
Bilby
,
B. A.
,
1949
, “
Dislocation Theory of Yielding and Strain Ageing of Iron
,”
Proc. Phys. Soc. Sec. A
,
62
(
1
), pp.
49
62
.
7.
Johnston
,
W. G.
, and
Gilman
,
J. J.
,
1959
, “
Dislocation Velocities, Dislocation Densities, and Plastic Flow in Lithium Fluoride Crystals
,”
J. Appl. Phys.
,
30
(
2
), pp.
129
144
.
8.
Hahn
,
G. T.
,
1962
, “
A Model for Yielding With Special Reference to the Yield-Point Phenomena of Iron and Related BCC Metals
,”
Acta Metall.
,
10
(
8
), pp.
727
738
.
9.
Kassner
,
M. E.
,
Geantil
,
P.
, and
Levine
,
L. E.
,
2013
, “
Long Range Internal Stresses in Single-Phase Crystalline Materials
,”
Int. J. Plast.
,
45
, pp.
44
60
.
10.
Bong
,
H. J.
,
Lim
,
H.
,
Lee
,
M. G.
,
Fullwood
,
D. T.
,
Homer
,
E. R.
, and
Wagoner
,
R. H.
,
2017
, “
An RVE Procedure for Micromechanical Prediction of Mechanical Behavior of Dual-Phase Steel
,”
Mater. Sci. Eng. A
,
695
, pp.
101
111
.
11.
Lim
,
H.
,
Lee
,
M. G.
,
Kim
,
J. H.
,
Adams
,
B. L.
, and
Wagoner
,
R. H.
,
2011
, “
Simulation of Polycrystal Deformation With Grain and Grain Boundary Effects
,”
Int. J. Plast.
,
27
(
9
), pp.
1328
1354
.
12.
Lim
,
H.
,
Subedi
,
S.
,
Fullwood
,
D. T.
,
Adams
,
B. L.
, and
Wagoner
,
R. H.
,
2014
, “
A Practical Meso-Scale Polycrystal Model to Predict Dislocation Densities and the Hall–Petch Effect
,”
Mater. Trans.
,
55
(
1
), pp.
35
38
.
13.
Sun
,
L.
, and
Wagoner
,
R. H.
,
2011
, “
Complex Unloading Behavior: Nature of the Deformation and Its Consistent Constitutive Representation
,”
Int. J. Plast.
,
27
(
7
), pp.
1126
1144
.
14.
Chen
,
Z.
,
Gandhi
,
U.
,
Lee
,
J.
, and
Wagoner
,
R. H.
,
2016
, “
Variation and Consistency of Young’s Modulus in Steel
,”
J. Mater. Process. Technol.
,
227
, pp.
227
243
.
15.
Chen
,
Z.
,
Bong
,
H. J.
,
Li
,
D.
, and
Wagoner
,
R. H.
,
2016b
, “
The Elastic–Plastic Transition of Metals
,”
Int. J. Plast.
,
83
, pp.
178
201
.
16.
Li
,
D.
, and
Wagoner
,
R. H.
,
2020
, “
The Nature of Yielding and Anelasticity in Metals
,”
Acta Mater.
,
206
, p.
116625
.
17.
Fressengeas
,
C.
,
Beaudoin
,
A. J.
,
Lebyodkin
,
M.
,
Kubin
,
L. P.
, and
Estrin
,
Y.
,
2005
, “
Dynamic Strain Aging: A Coupled Dislocation—Solute Dynamic Model
,”
Mater. Sci. Eng. A
,
400
, pp.
226
230
.
18.
Varadhan
,
S.
,
Beaudoin
,
A. J.
, and
Fressengeas
,
C.
,
2009
, “
Lattice Incompatibility and Strain-Aging in Single Crystals
,”
J. Mech. Phys. Solids
,
57
(
10
), pp.
1733
1748
.
19.
Marais
,
A.
,
Mazière
,
M.
,
Forest
,
S.
,
Parrot
,
A.
, and
Le Delliou
,
P.
,
2012
, “
Identification of a Strain-Aging Model Accounting for Lüders Behavior in a C-Mn Steel
,”
Philos. Mag.
,
92
(
28–30
), pp.
3589
3617
.
20.
Arechabaleta
,
Z.
,
van Liempt
,
P.
, and
Sietsma
,
J.
,
2016
, “
Quantification of Dislocation Structures From Anelastic Deformation Behavior
,”
Acta Mater.
,
115
, pp.
314
323
.
21.
van Liempt
,
P.
, and
Sietsma
,
J.
,
2016
, “
A Physically Based Yield Criterion I. Determination of the Yield Stress Based on Analysis of Pre-Yield Dislocation Behavior
,”
Mater. Sci. Eng. A
,
662
, pp.
80
87
.
22.
Torkabadi
,
A.
,
Perdahcıoğlu
,
E. S.
,
Meinders
,
V. T.
, and
van den Boogaard
,
A. H.
,
2018
, “
On the Nonlinear Anelastic Behavior of AHSS
,”
Int. J. Solids Struct.
,
151
, pp.
2
8
.
23.
Kuroda
,
M.
, and
Tvergaard
,
V.
,
2008
, “
On the Formulations of Higher-Order Strain Gradient Crystal Plasticity Models
,”
J. Mech. Phys. Solids
,
56
(
4
), pp.
1591
1608
.
24.
Colas
,
D.
,
Finot
,
E.
,
Flouriot
,
S.
,
Forest
,
S.
,
Mazière
,
M.
, and
Paris
,
T.
,
2019
, “
Local Ratcheting Phenomena in the Cyclic Behavior of Polycrystalline Tantalum
,”
JOM
,
71
(
8
), pp.
2586
2599
.
25.
Schwab
,
R.
, and
Ruff
,
V.
,
2013
, “
On the Nature of the Yield Point Phenomenon
,”
Acta Mater.
,
61
(
5
), pp.
1798
1808
.
26.
Hall
,
E. O.
,
1970
,
Yield Point Phenomena in Metals and Alloys
,
Plenum Press
,
New York
.
27.
Knezevic
,
M.
,
Zecevic
,
M.
,
Beyerlein
,
I. J.
, and
Lebensohn
,
R. A.
,
2016
, “
A Numerical Procedure Enabling Accurate Descriptions of Strain Rate-Sensitive Flow of Polycrystals Within Crystal Visco-Plasticity Theory
,”
Comput. Methods Appl. Mech. Eng.
,
308
, pp.
468
482
.
28.
Carroll
,
J. D.
,
Clark
,
B. G.
,
Buchheit
,
T. E.
,
Boyce
,
B. L.
, and
Weinberger
,
C. R.
,
2013
, “
An Experimental Statistical Analysis of Stress Projection Factors in BCC Tantalum
,”
Mater. Sci. Eng. A
,
581
, pp.
108
118
.
29.
Lim
,
H.
,
Carroll
,
J. D.
,
Battaile
,
C. C.
,
Buchheit
,
T. E.
,
Boyce
,
B. L.
, and
Weinberger
,
C. R.
,
2014
, “
Grain-Scale Experimental Validation of Crystal Plasticity Finite Element Simulations of Tantalum Oligocrystals
,”
Int. J. Plast.
,
60
, pp.
1
18
.
30.
Lim
,
H.
,
Carroll
,
J. D.
,
Battaile
,
C. C.
,
Boyce
,
B. L.
, and
Weinberger
,
C. R.
,
2015
, “
Quantitative Comparison Between Experimental Measurements and CP-FEM Predictions of Plastic Deformation in a Tantalum Oligocrystal
,”
Int. J. Mech. Sci.
,
92
, pp.
98
108
.
31.
Byron
,
J. F.
,
1968
, “
Plastic Deformation of Tantalum Single Crystals: II. The Orientation Dependence of Yield
,”
J. Less-Common Met.
,
14
(
2
), pp.
201
210
.
32.
Lim
,
H.
,
Bong
,
H. J.
,
Chen
,
S. R.
,
Rodgers
,
T. M.
,
Battaile
,
C. C.
, and
Lane
,
J. M. D.
,
2018
, “
Developing Anisotropic Yield Models of Polycrystalline Tantalum Using Crystal Plasticity Finite Element Simulations
,”
Mater. Sci. Eng. A
,
730
, pp.
50
56
.
33.
Lim
,
H.
,
Noell
,
P. J.
, and
Carroll
,
J. D.
,
2021
, “
Crystallographic Orientation Dependent Fracture Behavior in Tantalum Single Crystals
,”
Scr. Mater.
,
191
, pp.
76
80
.
34.
Lim
,
H.
,
Carroll
,
J. D.
,
Michael
,
J. R.
,
Battaile
,
C. C.
,
Chen
,
S. R.
, and
Lane
,
J. M. D.
,
2020
, “
Investigating Active Slip Planes in Tantalum Under Compressive Load: Crystal Plasticity and Slip Trace Analyses of Single Crystals
,”
Acta Mater.
,
185
, pp.
1
12
.
35.
Smialek
,
R. L.
, and
Mitchell
,
T. E.
,
1970
, “
Interstitial Solution Hardening in Tantalum Single Crystals
,”
Philos. Mag.
,
22
(
180
), pp.
1105
1127
.
36.
Lüders
,
W.
,
1860
, “
Über die äusserung der Elasticität an Stahlartigen Eisenstäben und Stahlstäben, und über Eine Beim Biegen Solcher Stäbe Beobachtete Molecularbewegung
,”
Dingler’s Polytech. J.
,
155
, pp.
18
22
.
37.
Piobert
,
G.
,
Morin
,
A. J.
, and
Didion
,
I.
,
1842
, “
Commission des Principes du tir
,”
Mémorial de l’artillerie
,
5
, pp.
501
552
.
38.
Bieler
,
T. R.
,
Sutton
,
S. C.
,
Dunlap
,
B. E.
,
Keith
,
Z. A.
,
Eisenlohr
,
P.
,
Crimp
,
M. A.
, and
Boyce
,
B. L.
,
2014
, “
Grain Boundary Responses to Heterogeneous Deformation in Tantalum Polycrystals
,”
JOM
,
66
(
1
), pp.
121
128
.
39.
Weinberger
,
C. R.
,
Boyce
,
B. L.
, and
Battaile
,
C. C.
,
2013
, “
Slip Planes in BCC Transition Metals
,”
Int. Mater. Rev.
,
58
(
5
), pp.
296
314
.
40.
Kocks
,
U. F.
,
1970
, “
The Relation Between Polycrystal Deformation and Single-Crystal Deformation
,”
Metall. Mater. Trans. B
,
1
(
5
), pp.
1121
1143
.
41.
Shields
,
J. A.
,
Goods
,
S. H.
,
Gibala
,
R.
, and
Mitchell
,
T. E.
,
1975
, “
Deformation of High Purity Tantalum Single Crystals at 4.2 K
,”
Mater. Sci. Eng.
,
20
, pp.
71
81
.
42.
Takeughi
,
S.
,
Kuramoto
,
E.
, and
Suzuki
,
T.
,
1972
, “
Orientation Dependence of Slip in Tantalum Single Crystals
,”
Acta Metall.
,
20
(
7
), pp.
909
915
.
43.
Gröger
,
R.
,
Bailey
,
A. G.
, and
Vitek
,
V.
,
2008
, “
Multiscale Modeling of Plastic Deformation of Molybdenum and Tungsten: I. Atomistic Studies of the Core Structure and Glide of 1/2<1 1 1> Screw Dislocations at 0 K
,”
Acta Mater.
,
56
(
19
), pp.
5401
5411
.
44.
Gröger
,
R.
,
Racherla
,
V.
,
Bassani
,
J. L.
, and
Vitek
,
V.
,
2008
, “
Multiscale Modeling of Plastic Deformation of Molybdenum and Tungsten: II. Yield Criterion for Single Crystals Based on Atomistic Studies of Glide of 1/2 < 111> Screw Dislocations
,”
Acta Mater.
,
56
(
19
), pp.
5412
5425
.
45.
Kalidindi
,
S. R.
,
1992
, “
Polycrystal Plasticity: Constitutive Modeling and Deformation Processing
,”
Doctoral dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
46.
Kalidindi
,
S. R.
,
Bronkhorst
,
C. A.
, and
Anand
,
L.
,
1992
, “
Crystallographic Texture Evolution in Bulk Deformation Processing of FCC Metals
,”
J. Mech. Phys. Solids
,
40
(
3
), pp.
537
569
.
47.
Mura
,
T.
,
1963
, “
Continuous Distribution of Moving Dislocations
,”
Philos. Mag.
,
8
(
89
), pp.
843
857
.
48.
Akarapu
,
S.
,
2009
, “
Dislocation Interactions With Interfaces
,”
Doctoral dissertation
,
Washington State University
,
Pullman, WA
.
49.
Mura
,
T.
,
2013
,
Micromechanics of Defects in Solids
,
Martinus Nijihoff Publishers
,
Dordrecht, The Netherlands
.
50.
Hamid
,
M.
,
Lyu
,
H.
,
Schuessler
,
B.
,
Wo
,
P.
, and
Zbib
,
H.
,
2017
, “
Modeling and Characterization of Grain Boundaries and Slip Transmission in Dislocation Density-Based Crystal Plasticity
,”
Crystals
,
7
(
6
), pp.
152
171
.
51.
Lee
,
M. G.
,
Lim
,
H.
,
Adams
,
B. L.
,
Hirth
,
J. P.
, and
Wagoner
,
R. H.
,
2010
, “
A Dislocation Density-Based Single Crystal Constitutive Equation
,”
Int. J. Plast.
,
26
(
7
), pp.
925
938
.
52.
Kocks
,
U. F.
,
1976
, “
Laws for Work-Hardening and Low-Temperature Creep
,”
ASME J. Eng. Mater. Technol.
,
98
(
1
), pp.
76
85
.
You do not currently have access to this content.