Abstract

Metallic nanofoams, cellular structures consisting of interlinked thin nanowires and empty pores, create low density, high surface area materials. These structures can suffer from macroscopically brittle behavior. In this work, we present a multiscale approach to study and explain the mechanical behavior of metallic nanofoams obtained by an electrospinning method. In this multiscale approach, atomistic simulations were first used to obtain the yield surfaces of different metallic nanofoam cell structures. Then, a continuum plasticity model using finite elements was used to predict the alloy nanofoam's overall strength in compression. The manufactured metallic nanofoams were produced by electrospinning a polymeric non-woven fabric containing metal precursors for alloys of copper–nickel and then thermally processing the fabric to create alloy metallic nanofoams. The nanofoams were tested with nanoindentation. The experimental results suggest that the addition of nickel increases the hardening of the nanofoams. The multiscale simulation modeling results agreed qualitatively with the experiments by suggesting that the addition of the alloying can be beneficial to the hardening behavior of the metallic nanofoams and helps to isolate the effects of alloying from morphological changes in the foam. This behavior was related to the addition of solute atoms that prevent the free dislocation movement and increase the strength of the structure.

References

1.
Stratmann
,
M.
, and
Rohwerder
,
M.
,
2001
, “
A Pore View of Corrosion
,”
Nature
,
410
(
6827
), pp.
421
423
.
2.
Erlebacher
,
J.
,
Aziz
,
M. J.
,
Karma
,
A.
,
Dimitrov
,
N.
, and
Sieradzki
,
K.
,
2001
, “
Evolution of Nanoporosity in Dealloying
,”
Nature
,
410
(
6827
), pp.
450
453
.
3.
Katagiri
,
A.
, and
Nakata
,
M.
,
2003
, “
Preparation of a High Surface Area Nickel Electrode by Alloying and Dealloying in a ZnCl2 ­ NaCl Melt
,”
J. Electrochem. Soc.
,
150
(
9
), pp.
C585
C590
.
4.
Sun
,
Y.
, and
Xia
,
Y.
,
2003
, “
Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells Through a Galvanic Replacement Reaction
,”
Nano Lett.
,
3
(
11
), pp.
1569
1572
.
5.
Sun
,
L.
,
Chien
,
C.-L.
, and
Searson
,
P. C.
,
2004
, “
Fabrication of Nanoporous Nickel by Electrochemical Dealloying
,”
Chem. Mater.
,
16
(
16
), pp.
3125
3129
.
6.
Kim
,
C.-E.
,
Rahimi
,
R. M.
,
Hightower
,
N.
,
Mastorakos
,
I.
, and
Bahr
,
D. F.
,
2018
, “
Synthesis, Microstructure, and Mechanical Properties of Polycrystalline Cu Nano-foam
,”
MRS Adv.
,
3
(
8–9
), pp.
469
475
.
7.
Biener
,
J.
,
Hodge
,
A. M.
, and
Hamza
,
A. V.
,
2005
, “
Microscopic Failure Behavior of Nanoporous Gold
,”
Appl. Phys. Lett.
,
87
(
12
), p.
121908
.
8.
He
,
L.
, and
Abdolrahim
,
N.
,
2018
, “
Deformation Mechanisms and Ductility Enhancement in Core-Shell Cu@Ni Nanoporous Metals
,”
Comput. Mater. Sci.
,
150
, pp.
397
404
.
9.
Abdolrahim
,
N.
,
Bahr
,
D. F.
,
Revard
,
B.
,
Reilly
,
C.
,
Ye
,
J.
,
Balk
,
T. J.
, and
Zbib
,
H. M.
,
2013
, “
The Mechanical Response of Core-Shell Structures for Nanoporous Metallic Materials
,”
Philos. Mag.
,
93
(
7
), pp.
736
748
.
10.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
11.
Hodge
,
A. M.
,
Biener
,
J.
,
Hayes
,
J. R.
,
Bythrow
,
P. M.
,
Volkert
,
C. A.
, and
Hamza
,
A. V.
,
2007
, “
Scaling Equation for Yield Strength of Nanoporous Open-Cell Foams
,”
Acta Mater.
,
55
(
4
), pp.
1343
1349
.
12.
Fan
,
H. L.
, and
Fang
,
D. N.
,
2009
, “
Modeling and Limits of Strength of Nanoporous Foams
,”
Mater. Des.
,
30
(
5
), pp.
1441
1444
.
13.
Xia
,
R.
,
Li
,
X.
,
Qin
,
Q.
,
Liu
,
J.
, and
Feng
,
X.-Q.
,
2011
, “
Surface Effects on the Mechanical Properties of Nanoporous Materials
,”
Nanotechnology
,
22
(
26
), p.
265714
.
14.
Feng
,
X.-Q.
,
Xia
,
R.
,
Li
,
X.
, and
Li
,
B.
,
2009
, “
Surface Effects on the Elastic Modulus of Nanoporous Materials
,”
Appl. Phys. Lett.
,
94
(
1
), p.
011916
.
15.
Briot
,
N. J.
, and
Balk
,
T. J.
,
2015
, “
Developing Scaling Relations for the Yield Strength of Nanoporous Gold
,”
Philos. Mag.
,
95
(
27
), pp.
2955
2973
.
16.
Ke
,
H.
,
Jimenez
,
A. G.
,
Da Silva
,
D. A. R.
, and
Mastorakos
,
I.
,
2020
, “
Multiscale Modeling of Copper and Copper/Nickel Nanofoams Under Compression
,”
Comput. Mater. Sci.
,
172
, p.
109290
.
17.
Ke
,
H.
,
Jimenez
,
A. G.
, and
Mastorakos
,
I.
,
2019
, “
A Multiscale Approach to Predict the Mechanical Properties of Copper Nanofoams
,”
MRS Adv.
,
4
(
5–6
), pp.
293
298
.
18.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6
), pp.
1253
1283
.
19.
Hanssen
,
A. G.
,
Hopperstad
,
O. S.
,
Langseth
,
M.
, and
Ilstad
,
H.
,
2002
, “
Validation of Constitutive Models Applicable to Aluminium Foams
,”
Int. J. Mech. Sci.
,
44
(
2
), pp.
359
406
.
20.
Kim
,
C.-E.
,
Rahimi
,
R. M.
, and
Bahr
,
D. F.
,
2020
, “
The Structure and Mechanical Properties of Cu 50 Ni 50 Alloy Nanofoams Formed via Polymeric Templating
,”
MRS Commun.
,
10
(
2
), pp.
286
291
.
21.
Blair
,
G. W. S.
,
Hening
,
J. C.
, and
Wagstaff
,
A.
,
1939
, “
The Flow of Cream Through Narrow Glass Tubes
,”
J. Phys. Chem.
,
43
(
7
), pp.
853
864
.
22.
Gunkelmann
,
N.
,
Rosandi
,
Y.
,
Ruestes
,
C. J.
,
Bringa
,
E. M.
, and
Urbassek
,
H. M.
,
2016
, “
Compaction and Plasticity in Nanofoams Induced by Shock Waves: A Molecular Dynamics Study
,”
Comput. Mater. Sci.
,
119
, pp.
27
32
.
23.
Gunkelmann
,
N.
,
Bringa
,
E. M.
, and
Rosandi
,
Y.
,
2018
, “
Molecular Dynamics Simulations of Aluminum Foams Under Tension: Influence of Oxidation
,”
J. Phys. Chem. C
,
122
(
45
), pp.
26243
26250
.
24.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
25.
Daw
,
M. S.
,
Foiles
,
S. M.
, and
Baskes
,
M. I.
,
1993
, “
The Embedded-Atom Method: A Review of Theory and Applications
,”
Mater. Sci. Rep.
,
9
(
7
), pp.
251
310
.
26.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1984
, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B
,
29
(
12
), pp.
6443
6453
.
27.
Voter
,
A. F.
, and
Chen
,
S. P.
,
1986
, “
Accurate Interatomic Potentials for Ni, Al and Ni3Al
,”
MRS Online Proceeding Library
,
82
, p.
175
.
28.
Xu
,
H.
, and
Li
,
Q.
,
2017
, “
Effect of Carbon Nanofiber Concentration on Mechanical Properties of Porous Magnesium Composites: Experimental and Theoretical Analysis
,”
Mater. Sci. Eng. A
,
706
, pp.
249
255
.
29.
Cebeci
,
H.
,
Stein
,
I. Y.
, and
Wardle
,
B. L.
,
2014
, “
Effect of Nanofiber Proximity on the Mechanical Behavior of High Volume Fraction Aligned Carbon Nanotube Arrays
,”
Appl. Phys. Lett.
,
104
(
2
), p.
023117
.
30.
Zhao
,
M.
,
Schlueter
,
K.
,
Wurmshuber
,
M.
,
Reitgruber
,
M.
, and
Kiener
,
D.
,
2021
, “
Open-Cell Tungsten Nanofoams: Scaling Behavior and Structural Disorder Dependence of Young’s Modulus and Flow Strength
,”
Mater. Des.
,
197
, p.
109187
.
31.
Guo
,
X.
,
Liang
,
W.
, and
Zhou
,
M.
,
2009
, “
Mechanism for the Pseudoelastic Behavior of FCC Shape Memory Nanowires
,”
Exp. Mech.
,
49
(
2
), pp.
183
190
.
32.
Cao
,
A.
,
2010
, “
Shape Memory Effects and Pseudoelasticity in Bcc Metallic Nanowires
,”
J. Appl. Phys.
,
108
(
11
), p.
113531
.
33.
Abdolrahim
,
N.
,
Mastorakos
,
I. N.
, and
Zbib
,
H. M.
,
2010
, “
Deformation Mechanisms and Pseudoelastic Behaviors in Trilayer Composite Metal Nanowires
,”
Phys. Rev. B
,
81
(
5
), p.
054117
.
34.
Phillips
,
A.
, and
Sierakowski
,
R. L.
,
1965
, “
On the Concept of the Yield Surface
,”
Acta Mechanica
,
1
(
1
), pp.
29
35
.
35.
Gubicza
,
J.
,
Jenei
,
P.
,
Nam
,
K.
,
Kádár
,
C.
,
Jo
,
H.
, and
Choe
,
H.
,
2018
, “
Compressive Behavior of Cu-Ni Alloy Foams: Effects of Grain Size, Porosity, Pore Directionality, and Chemical Composition
,”
Mater. Sci. Eng. A
,
725
, pp.
160
170
.
You do not currently have access to this content.