Abstract

This paper highlights the use of incorporating strain gradient into flow stress to study localization behavior in materials. Pioneered by Zbib and Aifantis in the late 1980s, the formulation enabled incorporation of length scales into continuum formulations naturally. The formulation has also evolved into being able to study the effects of microstructure and heterogeneity on localization in granular materials. A multi-slip Mohr–Coulomb type plasticity model with the flow stress in the constitutive equation modified with a higher order gradient term of the effective plastic strain is used for this purpose. The possibility of abrupt changes of mobilized friction caused by intense shearing rate often leads to particle breakage. Its effects on localization are accounted for by modifying the material properties such as mobilized friction using a scaling parameter averaged over a representative elementary area. The change of shearing rate in the integration points was monitored through quasi-statistically measure parameter called inertia number. The inertia number was set to be less than l.0 × 10−3 all the time to consider quasi-static. The formulation was implemented into a finite element code and used to simulate plane strain compression tests on dry sand. The model highlights the effects of confining pressure, anisotropic microstructure, and the non-coaxial angle between the direction of principal stress and principal plastic strain rate directions on shear band characteristics.

References

1.
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1989
, “
A Gradient-Dependent Flow Theory of Plasticity: Application to Metal and Soil Instabilities
,”
ASME J. Appl. Mech. Rev.
,
42
(
11
), pp.
295
304
.
2.
Cox
,
T. B.
, and
Low
,
J. R.
,
1974
, “
An Investigation of the Plastic Fracture of AISI 4340 and 18 Nickel-200 Grade Maraging Steels
,”
Metall. Trans.
,
5
(
6
), pp.
1457
1470
.
3.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
.
4.
Deve
,
H. E.
,
Asaro
,
R. J.
, and
Moody
,
N. R.
,
1989
, “
The Influence of Hydrogen on the Development of Localized Plastic Deformation in Internally Nitrided Single Crystals of Iron
,”
Scr. Metall.
,
23
(
3
), pp.
389
395
.
5.
Clifton
,
R. J.
,
Duffy
,
J.
,
Hartley
,
K. A.
, and
Shawki
,
T. G.
,
1984
, “
On Critical Conditions for Shear Band Formation at High Strain Rates
,”
Scr. Metall.
,
18
(
5
), pp.
443
448
.
6.
Burns
,
T. J.
,
1985
, “
Approximate Linear Stability Analysis of a Model of Adiabatic Shear Band Formation
,”
Q. Appl. Math.
,
43
(
1
), pp.
65
84
.
7.
Batra
,
R. C.
,
1987
, “
The Initiation and Growth of, and the Interaction Among, Adiabatic Shear Bands in Simple and Dipolar Materials
,”
Int. J. Plast.
,
3
(
1
), pp.
75
89
.
8.
Anand
,
L.
, and
Spitzig
,
W. A.
,
1982
, “
Shear-Band Orientations in Plane Strain
,”
Acta Metall.
,
30
(
2
), pp.
553
561
.
9.
Anand
,
L.
,
Kim
,
K. H.
, and
Shawki
,
T. G.
,
1987
, “
Onset of Shear Localization in Viscoplastic Solids
,”
J. Mech. Phys. Solids
,
35
(
4
), pp.
407
429
.
10.
Rice
,
J. R.
,
1976
, “
Theoretical and Applied Mechanics
,”
Proceedings of the 14th IUTAM Congress
,
Aug. 30–Sept. 4
,
North-Holland
, Amsterdam
, pp.
207
220
.
11.
Hutchinson
,
J. W.
,
1984
, “
Introduction to the Viewpoint Set on Shear Bands
,”
Scr. Metall.
,
18
(
5
), pp.
421
422
.
12.
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1987
, “
On the Postlocalization Behavior of Plastic Deformation, Mechanics of Microstructures
,”
MM Report No. I, Michigan Technological University
.”
13.
Desrues
,
J.
, and
Viggiani
,
G.
,
2004
, “
Strain Localization in Sand: An Overview of the Experimental Results Obtained in Grenoble Using Stereophotogrammetry
,”
Int. J. Numer. Anal. Methods Geomech.
,
28
(
4
), pp.
279
321
.
14.
Alshibli
,
K. A.
, and
Cil
,
M. B.
,
2018
, “
Influence of Particle Morphology on the Friction and Dilatancy of Sand
,”
J. Geotech. Geoenviron. Eng.
,
144
(
3
), p.
04017118
.
15.
Mallikarachchi
,
H.
, and
Soga
,
K.
,
2020
, “
Post-Localisation Analysis of Drained and Undrained Dense Sand With a Nonlocal Critical State Model
,”
Comput. Geotech.
,
124
, p.
103572
.
16.
Rudnicki
,
J. W.
, and
Rice
,
J. R.
,
1975
, “
Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
,
23
(
6
), pp.
371
394
.
17.
Hill
,
R.
, and
Hutchinson
,
J. W.
,
1975
, “
Bifurcation Phenomena in the Plane Tension Test
,”
J. Mech. Phys. Solids
,
23
(
4–5
), pp.
239
264
.
18.
Stören
,
S.
, and
Rice
,
J. R.
,
1975
, “
Localized Necking in Thin Sheets
,”
J. Mech. Phys. Solids
,
23
(
6
), pp.
421
441
.
19.
Anand
,
L.
, and
Spitzig
,
W. A.
,
1980
, “
Initiation of Localized Shear Bands in Plane Strain
,”
J. Mech. Phys. Solids
,
28
(
2
), pp.
113
128
.
20.
Hutchinson
,
J. W.
, and
Tvergaard
,
V.
,
1981
, “
Shear Band Formation in Plane Strain
,”
Int. J. Solids Struct.
,
17
(
5
), pp.
451
470
.
21.
Vardoulakis
,
I.
,
1980
, “
Shear Band Inclination and Shear Modulus of Sand in Biaxial Tests
,”
Int. J. Numer. Anal. Methods Geomech.
,
4
(
2
), pp.
103
119
.
22.
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1988
, “
On the Concept of Relative and Plastic Spins and Its Implications to Large Deformation Theories. Part I: Hypoelasticity and Vertex-Type Plasticity
,”
Acta Mech.
,
75
(
1
), pp.
15
33
.
23.
Marciniak
,
Z.
, and
Kuczyński
,
K.
,
1967
, “
Limit Strains in the Processes of Stretch-Forming Sheet Metal
,”
Int. J. Mech. Sci.
,
9
(
9
), pp.
609
620
.
24.
Bažant
,
Z. P.
, and
Belytschko
,
T.
,
1987
, “Strain Softening Continuum Damage: Localization and Size Effect,”
Constitutive Laws for Engineering Materials
,
C. S.
Desai
, ed.,
Elsevier
,
New York
, pp.
11
33
.
25.
Willam
,
K. A. S. P. A. R.
,
Prameno
,
E.
, and
Sture
,
S. T. E. I. N.
,
1987
, “
Uniqueness and Stability Issues of Strain Softening Computations
,”
Constitut. Laws Eng. Mater. Theory Appl.
,
1
, pp.
249
260
.
26.
Sandler
,
I. S.
, and
Rubin
,
D.
,
1987
, “The Consequences of Non-Associated Plasticity in Dynamic Problems,”
Constitutive Laws for Engineering Materials: Theory and Applications
,
C. S.
Desai
,
E.
Krempl
,
P. D.
Kiousis
, and
T.
Kundu
, eds.,
Elsevier
,
New York
, pp.
345
352
.
27.
Summersgill
,
F. C.
,
Kontoe
,
S.
, and
Potts
,
D. M.
,
2017
, “
Critical Assessment of Nonlocal Strain-Softening Methods in Biaxial Compression
,”
Int. J. Geomech.
,
17
(
7
), p.
04017006
.
28.
Bažant
,
Z. P.
,
1984
, “
Imbricate Continuum and Its Variational Derivation
,”
J. Eng. Mech.
,
110
(
12
), pp.
1693
1712
.
29.
Aifantis
,
E. G.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
ASME J. Eng. Mater. Technol.
,
106
(
4
), pp.
326
330
.
30.
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1992
, “
On the Gradient-Dependent Theory of Plasticity and Shear Banding
,”
Acta Mech.
,
92
(
1
), pp.
209
225
.
31.
Anand
,
L.
, and
Gu
,
C.
,
2000
, “
Granular Materials: Constitutive Equations and Strain Localization
,”
J. Mech. Phys. Solids
,
48
(
8
), pp.
1701
1733
.
32.
Al Hattamleh
,
O.
,
Muhunthan
,
B.
, and
Zbib
,
H. M.
,
2005
, “
Stress Distribution in Granular Heaps Using Multi-Slip Formulation
,”
Int. J. Numer. Anal. Methods Geomech.
,
29
(
7
), pp.
713
727
.
33.
Al Hattamleh
,
O.
,
Muhunthan
,
B.
, and
Zbib
,
H. M.
,
2007
, “
Multi-Slip Gradient Formulation for Modeling Microstructure Effects on Shear Bands in Granular Materials
,”
Int. J. Solids Struct.
,
44
(
10
), pp.
3393
3410
.
34.
Al Hattamleh
,
O.
,
Muhunthan
,
B.
, and
Shalabi
,
F.
,
2009
, “
Numerical Simulation of Fabric Anisotropy and Strain Localization of Sand Under Simple Shear
,”
Int. J. Numer. Anal. Methods Geomech.
,
33
(
9
), pp.
1255
1275
.
35.
Vanel
,
L.
,
Howell
,
D.
,
Clark
,
D.
,
Behringer
,
R. P.
, and
Clément
,
E.
,
1999
, “
Memories in Sand: Experimental Tests of Construction History on Stress Distributions Under Sandpiles
,”
Phys. Rev. E
,
60
(
5
), p.
R5040
.
36.
Henann
,
D. L.
, and
Kamrin
,
K.
,
2013
, “
A Predictive, Size-Dependent Continuum Model for Dense Granular Flows
,”
Proc. Natl. Acad. Sci. USA
,
110
(
17
), pp.
6730
6735
.
37.
ABAQUS
,
2003
,
Reference Manuals
,
Hibbitt, Karlsson and Sorensen Inc
,
Pawtucket, RI
.
38.
Bažant
,
Z. P.
, and
Jirásek
,
M.
,
2002
, “
Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress
,”
J. Eng. Mech.
,
128
(
11
), pp.
1119
1149
.
39.
Vardoulakis
,
I.
,
1989
, “
Shear-Banding and Liquefaction in Granular Materials on the Basis of a Cosserat Continuum Theory
,”
Ing. Arch.
,
59
(
2
), pp.
106
113
.
40.
Sulem
,
J.
, and
Vardoulakis
,
I. G.
,
1995
,
Bifurcation Analysis in Geomechanics
,
CRC Press
,
London
.
41.
Chambon
,
R.
,
Crochepeyre
,
S.
, and
Desrues
,
J.
,
2000
, “
Localization Criteria for Non-Linear Constitutive Equations of Geomaterials
,”
Mech. Cohesive Frict. Mater.
,
5
(
1
), pp.
61
82
.
42.
Nemat-Nasser
,
S.
,
1979
, “
Decomposition of Strain Measures and Their Rates in Finite Deformation Elastoplasticity
,”
Int. J. Solids Struct.
,
15
(
2
), pp.
155
166
.
43.
Oda
,
M.
,
Nemat-Nasser
,
S.
, and
Mehrabadi
,
M. M.
,
1982
, “
A Statistical Study of Fabric in a Random Assembly of Spherical Granules
,”
Int. J. Numer. Anal. Methods Geomech.
,
6
(
1
), pp.
77
94
.
44.
Oda
,
M.
,
Nemat-Nasser
,
S.
, and
Konishi
,
J.
,
1985
, “
Stress-Induced Anisotropy in Granular Masses
,”
Soils Found.
,
25
(
3
), pp.
85
97
.
45.
Nemat-Nasser
,
S.
,
2000
, “
A Micromechanically-Based Constitutive Model for Frictional Deformation of Granular Materials
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1541
1563
.
46.
Mehrabadi
,
M. M.
, and
Cowin
,
S. C.
,
1978
, “
Initial Planar Deformation of Dilatant Granular Materials
,”
J. Mech. Phys. Solids
,
26
(
4
), pp.
269
284
.
47.
Anand
,
L.
,
1983
, “
Plane Deformations of Ideal Granular Materials
,”
J. Mech. Phys. Solids
,
31
(
2
), pp.
105
122
.
48.
Mühlhaus
,
H. B.
,
Shi
,
J.
,
Olsen-Kettle
,
L.
, and
Moresi
,
L.
,
2011
, “
Effects of a Non-Coaxial Flow Rule on Shear Bands in Viscous-Plastic Materials
,”
Granul. Matter
,
13
(
3
), pp.
205
210
.
49.
Vardoulakis
,
I.
,
1996
, “
Deformation of Water-Saturated Sand: I. Uniform Undrained Deformation and Shear Banding
,”
Géotechnique
,
46
(
3
), pp.
441
456
.
50.
Shizawa
,
K.
, and
Zbib
,
H. M.
,
1999
, “
A Thermodynamical Theory of Gradient Elastoplasticity With Dislocation Density Tensor. I: Fundamentals
,”
Int. J. Plast.
,
15
(
9
), pp.
899
938
.
51.
Al Hattamleh
,
O.
,
Muhunthan
,
B.
, and
Zbib
,
H. M.
,
2004
, “
Gradient Plasticity Modelling of Strain Localization in Granular Materials
,”
Int. J. Numer. Anal. Methods Geomech.
,
28
(
6
), pp.
465
481
.
52.
Balendran
,
B.
, and
Nemat-Nasser
,
S.
,
1993
, “
Double Sliding Model for Cyclic Deformation of Granular Materials, Including Dilatancy Effects
,”
J. Mech. Phys. Solids
,
41
(
3
), pp.
573
612
.
53.
Taylor
,
D. W.
,
1948
,
Fundamentals of Soil Mechanics
,
John Wiley and Sons, Inc.
,
New York
, p.
42
.
54.
Han
,
C.
, and
Drescher
,
A.
,
1993
, “
Shear Bands in Biaxial Tests on Dry Coarse Sand
,”
Soils Found.
,
33
(
1
), pp.
118
132
.
55.
Razavi
,
M. R.
,
Muhunthan
,
B.
, and
Al Hattamleh
,
O.
,
2007
, “
Representative Elementary Volume Analysis of Sands Using X-Ray Computed Tomography
,”
Geotech. Test. J.
,
30
(
3
), pp.
212
219
.
56.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1965
,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Table
,
National Bureau of Standards Applied Mathematics Series 55
,
US Department of Commerce
,
Washington, DC
.
57.
Henann
,
D. L.
, and
Kamrin
,
K.
,
2014
, “
Continuum Modeling of Secondary Rheology in Dense Granular Materials
,”
Phys. Rev. Lett.
,
113
(
17
), p.
178001
.
58.
Li
,
S.
, and
Henann
,
D. L.
,
2019
, “
Material Stability and Instability in Non-Local Continuum Models for Dense Granular Materials
,”
J. Fluid Mech.
,
871
, pp.
799
830
.
59.
Dsouza
,
P. V.
, and
Nott
,
P. R.
,
2020
, “
A Non-Local Constitutive Model for Slow Granular Flow That Incorporates Dilatancy
,”
J. Fluid Mech.
,
888
, pp. R3-1–R3-12.
60.
Roscoe
,
K. H.
,
1970
, “
The Influence of Strains in Soil Mechanics
,”
Geotechnique
,
20
(
2
), pp.
129
170
.
You do not currently have access to this content.