Abstract

The tensile tests of body-centered cubic (BCC) Fe nanowires were simulated through molecular dynamics methods. The temperature and strain rate effects on the mechanical properties as well as the orientation-dependent plastic deformation mechanism were analyzed. For [001]-oriented BCC Fe nanowires, as the temperature increased, the yield stress and Young’s modulus decreased. While the yield stress and Young’s modulus increased as the strain rate increased. With the increase in temperature, when the temperature was less than 400 K, the twin propagation stress decreased dramatically, and then tended to reach a saturation value at higher temperatures. Under different temperatures and strain rates, the [001]-oriented Fe nanowires all deformed by twinning. The oscillation stage in the stress–strain curve corresponds to the process from the nucleation of the twin to the reorientation of the nanowire. For [110]-oriented Fe nanowires, the plastic deformation is dominated by dislocation slip. The independent events such as the nucleation, slip, and annihilation of dislocations are the causes of the unsteady fluctuations in the stress–strain curve. The Fe nanowires eventually undergo shear damage along the dominant slip surface.

References

References
1.
Greer
,
J. R.
, and
De Hosson
,
J. T. M.
,
2011
, “
Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect
,”
Prog. Mater. Sci.
,
56
(
6
), pp.
654
724
. 10.1016/j.pmatsci.2011.01.005
2.
Melosh
,
N. A.
,
Boukai
,
A.
,
Diana
,
F.
,
Gerardot
,
B.
,
Badolato
,
A.
,
Petroff
,
P. M.
, and
Heath
,
J. R.
,
2003
, “
Ultrahigh-Density Nanowire Lattices and Circuits
,”
Science
,
300
(
5616
), pp.
112
115
. 10.1126/science.1081940
3.
Kawamura
,
M.
,
Paul
,
N.
,
Cherepanov
,
V.
, and
Voigtländer
,
B.
,
2003
, “
Nanowires and Nanorings at the Atomic Level
,”
Phys. Rev. Lett.
,
91
(
9
), p.
096102
. 10.1103/PhysRevLett.91.096102
4.
Friedman
,
R. S.
,
McAlpine
,
M. C.
,
Ricketts
,
D. S.
,
Ham
,
D.
, and
Lieber
,
C. M.
,
2005
, “
High-Speed Integrated Nanowire Circuits
,”
Nature
,
434
(
7037
), p.
1085
. 10.1038/4341085a
5.
Weinberger
,
C. R.
, and
Cai
,
W.
,
2012
, “
Plasticity of Metal Nanowires
,”
J. Mater. Chem.
,
22
(
8
), p.
3277
. 10.1039/c2jm13682a
6.
Lee
,
W. S.
, and
Lin
,
C. F.
,
2001
, “
Impact Properties and Microstructure Evolution of 304L Stainless Steel
,”
Mater. Sci. Eng. A
,
308
(
1–2
), pp.
124
135
. 10.1016/S0921-5093(00)02024-4
7.
Lu
,
L.
,
Li
,
S. X.
, and
Lu
,
K.
,
2001
, “
An Abnormal Strain Rate Effect on Tensile Behavior in Nanocrystalline Copper
,”
Scr. Mater.
,
45
(
10
), pp.
1163
1169
. 10.1016/S1359-6462(01)01138-1
8.
Kang
,
K.
, and
Cai
,
W.
,
2010
, “
Size and Temperature Effects on the Fracture Mechanisms of Silicon Nanowires: Molecular Dynamics Simulations
,”
Int. J. Plast.
,
26
(
9
), pp.
1387
1401
. 10.1016/j.ijplas.2010.02.001
9.
Chang
,
L.
,
Zhou
,
C. Y.
,
Pan
,
X. M.
, and
He
,
X.-H.
,
2017
, “
Size-dependent Deformation Mechanism Transition in Titanium Nanowires Under High Strain Rate Tension
,”
Mater. Des.
,
134
, pp.
320
330
. 10.1016/j.matdes.2017.08.058
10.
Chang
,
L.
,
Zhou
,
C. Y.
,
Liu
,
H. X.
, and
He
,
X.-H.
,
2018
, “
Orientation and Strain Rate Dependent Tensile Behavior of Single Crystal Titanium Nanowires by Molecular Dynamics Simulations
,”
J. Mater. Sci. Technol.
,
34
(
5
), pp.
864
877
. 10.1016/j.jmst.2017.03.011
11.
Chang
,
L.
,
Zhou
,
C. Y.
,
Wen
,
L. L.
,
Li
,
J.
, and
He
,
X.-H.
,
2017
, “
Molecular Dynamics Study of Strain Rate Effects on Tensile Behavior of Single Crystal Titanium Nanowire
,”
Comput. Mater. Sci.
,
128
, pp.
348
358
. 10.1016/j.commatsci.2016.11.034
12.
Sainath
,
G.
,
Choudhary
,
B. K.
, and
Jayakumar
,
T.
,
2015
, “
Molecular Dynamics Simulation Studies on the Size Dependent Tensile Deformation and Fracture Behaviour of Body Centred Cubic Iron Nanowires
,”
Comput. Mater. Sci.
,
104
, pp.
76
83
. 10.1016/j.commatsci.2015.03.053
13.
Wen
,
Y. H.
,
Zhu
,
Z. Z.
, and
Zhu
,
R. Z.
,
2008
, “
Molecular Dynamics Study of the Mechanical Behavior of Nickel Nanowire: Strain Rate Effects
,”
Comput. Mater. Sci.
,
41
(
4
), pp.
553
560
. 10.1016/j.commatsci.2007.05.012
14.
Huang
,
D.
,
Zhang
,
Q.
, and
Qiao
,
P. Z.
,
2011
, “
Molecular Dynamics Evaluation of Strain Rate and Size Effects on Mechanical Properties of FCC Nickel Nanowires
,”
Comput. Mater. Sci.
,
50
(
3
), pp.
903
910
. 10.1016/j.commatsci.2010.10.028
15.
Olsson
,
P. T.
,
Melin
,
S.
, and
Persson
,
C.
,
2007
, “
Atomistic Simulations of Tensile and Bending Properties of Single-Crystal bcc Iron Nanobeams
,”
Phys. Rev. B
,
76
(
22
), p.
224112
. 10.1103/PhysRevB.76.224112
16.
Zhang
,
Y.
,
Yu
,
D. J.
, and
Wang
,
K. M.
,
2012
, “
Atomistic Simulation of the Orientation-Dependent Plastic Deformation Mechanisms of Iron Nanopillars
,”
J. Mater. Sci. Technol.
,
28
(
2
), pp.
164
168
. 10.1016/S1005-0302(12)60037-1
17.
Sainath
,
G.
, and
Choudhary
,
B. K.
,
2016
, “
Orientation Dependent Deformation Behaviour of BCC Iron Nanowires
,”
Comput. Mater. Sci.
,
111
, pp.
406
415
. 10.1016/j.commatsci.2015.09.055
18.
Sainath
,
G.
, and
Choudhary
,
B. K.
,
2018
, “
Twinning to Slip Transition in Ultrathin BCC Fe Nanowires
,”
Phys. Lett. A
,
382
(
15
), pp.
1047
1051
. 10.1016/j.physleta.2018.02.007
19.
Li
,
S. Z.
,
Ding
,
X. D.
,
Deng
,
J. K.
,
Lookman
,
T.
,
Li
,
J.
,
Ren
,
X. B.
,
Sun
,
J.
, and
Saxena
,
A.
,
2010
, “
Superelasticity in bcc Nanowires by a Reversible Twinning Mechanism
,”
Phys. Rev. B
,
82
(
20
), p.
205435
. 10.1103/PhysRevB.82.205435
20.
Plimpton
,
S. J.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
. 10.1006/jcph.1995.1039
21.
Mendelev
,
M. I.
,
Han
,
S.
,
Srolovitz
,
D. J.
,
Ackland
,
G. J.
,
Sun
,
D. Y.
, and
Asta
,
M.
,
2003
, “
Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron
,”
Philos. Mag.
,
83
(
35
), pp.
3977
3994
. 10.1080/14786430310001613264
22.
Sainath
,
G.
, and
Choudhary
,
B. K.
,
2017
, “
Atomistic Simulations on Ductile-Brittle Transition in <111> BCC Fe Nanowires
,”
J. Appl. Phys.
,
122
(
9
), p.
095101
. 10.1063/1.4999090
23.
Healy
,
C. J.
, and
Ackland
,
G. J.
,
2014
, “
Molecular Dynamics Simulations of Compression–Tension Asymmetry in Plasticity of Fe Nanopillars
,”
Acta Mater.
,
70
, pp.
105
112
. 10.1016/j.actamat.2014.02.021
24.
Dutta
,
A.
,
2017
, “
Compressive Deformation of Fe Nanopillar at High Strain Rate: Modalities of Dislocation Dynamics
,”
Acta Mater.
,
125
, pp.
219
230
. 10.1016/j.actamat.2016.11.062
25.
Wang
,
J. W.
,
Zeng
,
Z.
,
Weinberger
,
C. R.
,
Zhang
,
Z.
,
Zhu
,
T.
, and
Mao
,
S. X.
,
2015
, “
In Situ Atomic-Scale Observation of Twinning-Dominated Deformation in Nanoscale Body-Centred Cubic Tungsten
,”
Nat. Mater.
,
14
(
6
), pp.
594
600
. 10.1038/nmat4228
26.
Hoover
,
W. G.
,
1986
,
Molecular Dynamics
,
Springer-Verlag
,
Berlin
.
27.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
Van Gunsteren
,
W. F.
, and
Hermans
,
J.
,
1984
, “
Interaction Models for Water in Relation to Protein Hydration
,”
Intermolecular Forces
,
81
, pp.
331
342
.
28.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO-the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
. 10.1088/0965-0393/18/1/015012
29.
Seo
,
J.-H.
,
Park
,
H. S.
,
Yoo
,
Y.
,
Seong
,
T.-Y.
,
Li
,
J.
,
Ahn
,
J.-P.
,
Kim
,
B.
, and
Choi
,
I.-S.
,
2013
, “
Origin of Size Dependency in Coherent-Twin-Propagation-Mediated Tensile Deformation of Noble Metal Nanowires
,”
Nano Lett
,
13
(
11
), pp.
5112
5116
. 10.1021/nl402282n
30.
Honeycutt
,
J. D.
, and
Andersen
,
H. C.
,
1987
, “
Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters
,”
J. Phys. Chem.
,
91
(
19
), pp.
4950
4953
. 10.1021/j100303a014
31.
Stukowski
,
A.
,
Bulatov
,
V. V.
, and
Arsenlis
,
A.
,
2012
, “
Automated Identification and Indexing of Dislocations in Crystal Interfaces
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
8
), p.
085007
. 10.1088/0965-0393/20/8/085007
You do not currently have access to this content.