Abstract

The kinetics of reversed austenite formation in 301 stainless steel and its effect on the deformation of an automobile front bumper beam are studied by using modeling approaches at different length scales. The diffusion-controlled reversed austenite formation is studied by using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model, based on the experimental data. The model can be used to predict the volume fraction of reversed austenite in a temperature range of 650–750 °C. A three-dimensional elastoplastic phase-field model is used to study the diffusionless shear-type reversed austenite formation in 301 steel at 760 °C. The phase-field simulations show that reversion initiates at martensite lath boundaries and proceeds inwards of laths due to the high driving force at such high temperature. The effect of reversed austenite (RA) and martensite on the deformation of a bumper beam subjected to front and side impacts is studied by using finite element (FE) analysis. The FE simulations show that the presence of reversed austenite and martensite increased the critical speed at which the beam yielded and failed. RA fraction also affects the performance of the bumper beam.

References

References
1.
Singh
,
M.
,
2016
, “
Application of Steel in Automotive Industry
,”
Int. J. Emerg. Technol. Adv. Eng.
,
6
(
7
), pp.
246
253
.
2.
Eskandari
,
M.
,
Najafizadeh
,
A.
,
Kermanpur
,
A.
, and
Karimi
,
M.
,
2009
, “
Potential Application of Nanocrystalline 301 Austenitic Stainless Steel
,”
Mater. Des.
,
30
(
9
), pp.
3869
3872
. 10.1016/j.matdes.2009.03.043
3.
Rajasekhara
,
S.
,
Ferreira
,
P.
,
Karjalainen
,
L.
, and
Kyrolainen
,
A.
,
2007
, “
Hall–Petch Behavior in Ultra-Fine-Grained AISI 301LN
,”
Metall. Mater. Trans. A
,
38A
(
6
), pp.
1202
1210
. 10.1007/s11661-007-9143-4
4.
Forouzan
,
F.
,
Najafizadeh
,
A.
,
Kermanpur
,
A.
,
Hedayati
,
A.
, and
Surkialiabad
,
R.
,
2010
, “
Production of Nano/Submicron Grained AISI 304L Stainless Steel Through the Martensite Reversion Process
,”
Mater. Sci. Eng. A
,
527
(
27–28
), pp.
7334
7339
. 10.1016/j.msea.2010.08.002
5.
Shirazi
,
H.
,
Miyamoto
,
G.
,
Nedjad
,
S.
,
Nanesa
,
H.
,
Ahmadabadi
,
M.
, and
Furuhara
,
T.
,
2013
, “
Microstructural Evaluation of Austenite Reversion During Intercritical Annealing of FeNiMn Martensitic Steel
,”
J. Alloys Compd.
,
577
(
1
), pp.
S572
S577
. 10.1016/j.jallcom.2012.02.015
6.
Di Schino
,
A.
,
Barteri
,
M.
, and
Kenny
,
J.
,
2002
, “
Development of Ultra Fine Grain Structure by Martensitic Reversion in Stainless Steel
,”
J. Mater. Sci. Lett.
,
21
(
9
), pp.
751
753
. 10.1023/A:1015757710546
7.
Esfandiary
,
H.
,
Hosseini
,
S.
,
Ashrafizadeh
,
F.
, and
Kermanpur
,
A.
,
2017
, “
Effects of Martensite Reversion Parameters on the Formation of Nano/Ultrafine Grain Structure in AISI 304L Stainless Steel
,”
Int. J. ISSI
,
14
(
1
), pp.
23
29
.
8.
Di Schino
,
A.
,
Salvatori
,
I.
, and
Kenny
,
J.
,
2002
, “
Effects of Martensite Formation and Austenite Reversion on Grain Refining of AISI 304 Stainless Steel
,”
J. Mater. Sci.
,
37
(
21
), pp.
4561
4565
. 10.1023/A:1020631912685
9.
Misra
,
R.
,
Nayak
,
S.
,
Venkatasurya
,
P.
,
Ramuni
,
V.
,
Somani
,
M.
, and
Karjalainen
,
L.
,
2010
, “
Nanograined/ultrafine-Grained Structure and Tensile Deformation Behavior of Shear Phase Reversion-induced 301 Austenitic Stainless Steel
,”
Metall. Mater. Trans. A
,
41A
(
8
), pp.
2162
2174
. 10.1007/s11661-010-0230-6
10.
Misra
,
R.
,
Zhang
,
Z.
,
Venkatasurya
,
P.
,
Somani
,
M.
, and
Karjalainen
,
L.
,
2010
, “
Martensite Shear Phase Reversion-Induced Nanograined/Ultrafine-Grained Fe-16Cr-10Ni Alloy: the Effect of Interstitial Alloying Elements and Degree of Austenite Stability on Phase Reversion
,”
Mater. Sci. Eng. A
,
527
(
29–30
), pp.
7779
7792
. 10.1016/j.msea.2010.08.051
11.
Smith
,
H.
, and
West
,
D.
,
1973
, “
Reversion of Martensite to Austenite in Certain Stainless Steels
,”
J. Mater. Sci.
,
8
(
10
), pp.
1413
1420
. 10.1007/BF00551664
12.
Guy
,
K.
,
Butler
,
E.
, and
West
,
D.
,
1983
, “
Reversion of BCC Alpha’ Martensite in Fe-Cr-Ni Austenitic Stainless Steels
,”
Met. Sci.
,
17
(
4
), pp.
167
176
. 10.1179/030634583790420961
13.
Tomimura
,
K.
,
Takaki
,
S.
, and
Tokunaga
,
Y.
,
1991
, “
Reversion Mechanism From Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless-Steels
,”
ISIJ Int.
,
31
(
12
), pp.
1431
1437
. 10.2355/isijinternational.31.1431
14.
Wang
,
L.
,
Dong
,
C.
,
Man
,
C.
,
Kong
,
D.
,
Xiao
,
K.
, and
Li
,
X.
,
2020
, “
Enhancing the Corrosion Resistance of Selective Laser Melted 15-5PH Martensite Stainless Steel Via Heat Treatment
,”
Corr. Sci.
,
166
(
108427
), pp.
1
12
.
15.
Lee
,
Y.
,
Shin
,
H.
,
Leem
,
D.
,
Choi
,
J.
,
Jin
,
W.
, and
Choi
,
C.
,
2003
, “
Reverse Transformation Mechanism of Martensite to Austenite and Amount of Retained Austenite After Reverse Transformation in Fe-3Si-13Cr-7Ni (wt-%) Martensitic Stainless Steel
,”
Mater. Sci. Tech.
,
19
(
3
), pp.
393
398
. 10.1179/026708303225009742
16.
Takaki
,
S.
,
Tomimura
,
K.
, and
Tokunaga
,
Y.
,
1994
, “
Effect of Induced Pre-Cold Working on Diffusional Reversion of Deformation Martensite in Metastable Austenitic Stainless Steel
,”
ISIJ Int.
,
34
(
6
), pp.
522
527
. 10.2355/isijinternational.34.522
17.
Johannsen
,
D.
,
Kyrolainen
,
A.
, and
Ferreira
,
P.
,
2006
, “
Influence of Annealing Treatment on the Formation of Nano/Submicron Grain Size AISI 301 Austenitic Stainless Steels
,”
Met. Trans. A
,
37A
(
8
), pp.
2325
2338
. 10.1007/BF02586207
18.
Huang
,
J.
,
Ye
,
X.
,
Gu
,
J.
,
Chen
,
X.
, and
Xu
,
Z.
,
2012
, “
Enhanced Mechanical Properties of Type AISI301LN Austenitic Stainless Steel Through Advanced Thermo Mechanical Process
,”
Mater. Sci. Eng. A
,
532
, pp.
190
195
. 10.1016/j.msea.2011.10.080
19.
Kulakov
,
M.
,
Poole
,
W.
, and
Militzer
,
M.
,
2014
, “
A Microstructure Evolution Model for Intercritical Annealing of a Low Carbon Dual Phase Steel
,”
ISIJ Int.
,
54
(
11
), pp.
2627
2636
. 10.2355/isijinternational.54.2627
20.
Zhang
,
Y.
,
Yin
,
Y.
,
Li
,
D.
,
Ma
,
P.
,
Liu
,
Q.
,
Yuan
,
X.
, and
Li
,
S.
,
2019
, “
Temperature Dependent Phase Transformation Kinetics of Reverted Austenite During Tempering in 13Cr Supermartensitic Stainless Steel
,”
Metals
,
9
(
11
), pp.
1
14
.
21.
Mohammad-Ebrahimi
,
M.
,
Zarei-Hanzaki
,
A.
,
Abedi
,
H.
,
Vakili
,
S.
, and
Soundararajan
,
C.
,
2019
, “
The Enhanced Static Recrystallization Kinetics of a Non-Equiatomic High Entropy Alloy Through the Reverse Transformation of Strain Induced Martensite
,”
J. Alloys Compnds.
,
806
, pp.
1550
1563
. 10.1016/j.jallcom.2019.07.105
22.
Chen
,
L.
,
2002
, “
Phase-Field Models for Microstructure Evolution
,”
Annu. Rev. Mater. Res.
,
32
, pp.
113
140
. 10.1146/annurev.matsci.32.112001.132041
23.
Moelans
,
N.
,
Blanpain
,
B.
, and
Wollants
,
P.
,
2008
, “
An Introduction to Phase-Field Modeling of Microstructure Evolution
,”
Calphad
,
32
(
2
), pp.
268
294
. 10.1016/j.calphad.2007.11.003
24.
Artemev
,
A.
,
Jin
,
Y.
, and
Khachaturyan
,
A.
,
2001
, “
Three-Dimensional Phase Field Model of Proper Martensitic Transformation
,”
Acta Mater.
,
49
(
7
), pp.
1165
1177
. 10.1016/S1359-6454(01)00021-0
25.
Yeddu
,
H.
,
Malik
,
A.
,
Ågren
,
J.
,
Amberg
,
G.
, and
Borgenstam
,
A.
,
2012
, “
Three-Dimensional Phase-field Modeling of Martensitic Microstructure Evolution in Steels
,”
Acta Mater.
,
60
(
4
), pp.
1538
1547
. 10.1016/j.actamat.2011.11.039
26.
Yamanaka
,
A.
,
Takaki
,
T.
, and
Tomita
,
Y.
,
2008
, “
Elastoplastic Phasefield Simulation of Self- and Plastic Accommodations in Cubic Tetragonal Martensitic Transformation
,”
Mater. Sci. Eng. A
,
491
(
1–2
), pp.
378
384
. 10.1016/j.msea.2008.02.035
27.
Yeddu
,
H.
,
Razumovskiy
,
V.
,
Borgenstam
,
A.
,
Korzhavyi
,
P.
,
Ruban
,
A.
, and
Ågren
,
J.
,
2012
, “
Multi-Length Scale Modeling of Martensitic Transformations in Stainless Steels
,”
Acta Mater.
,
60
(
19
), pp.
6508
6517
. 10.1016/j.actamat.2012.08.012
28.
Yeddu
,
H.
,
2018
, “
Phase-field Modeling of Austenite Grain Size Effect on Martensitic Transformation in Stainless Steels
,”
Comp. Mater. Sci.
,
154
, pp.
75
83
. 10.1016/j.commatsci.2018.07.040
29.
Ahluwalia
,
R.
,
Lookman
,
T.
,
Saxena
,
A.
, and
Albers
,
R.
,
2004
, “
Landau Theory for Shape Memory Polycrystals
,”
Acta Mater.
,
52
(
1
), pp.
209
218
. 10.1016/j.actamat.2003.09.015
30.
Yeddu
,
H.
,
Lookman
,
T.
, and
Saxena
,
A.
,
2014
, “
Reverse Phase Transformation of Martensite to Austenite in Stainless Steels: A 3D Phase-Field Study
,”
J. Mater. Sci.
,
49
(
10
), pp.
3642
3651
. 10.1007/s10853-014-8067-9
31.
Yeddu
,
H.
,
Lookman
,
T.
, and
Saxena
,
A.
,
2014
, “
The Simultaneous Occurrence of Martensitic Transformation and Reversion of Martensite
,”
Mater. Sci. Eng. A
,
594
, pp.
48
51
. 10.1016/j.msea.2013.11.036
32.
Yeddu
,
H.
,
Shaw
,
B.
, and
Somers
,
M.
,
2017
, “
Effect of Thermal Cycling on Martensitic Transformation and Mechanical Strengthening of Stainless Steels – A Phase-Field Study
,”
Mater. Sci. Eng. A
,
690
, pp.
1
5
. 10.1016/j.msea.2017.02.085
33.
Honeycombe
,
R.
, and
Bhadeshia
,
H.
,
1981
,
Steels Microstructure and Properties
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
34.
Somani
,
M.
,
Juntunen
,
P.
, and
Karjalainen
,
L.
,
2009
, “
Enhanced Mechanical Properties Through Reversion in Metastable Austenitic Stainless Steels
,”
Metall. Mater. Trans. A
,
40A
(
3
), pp.
729
744
. 10.1007/s11661-008-9723-y
35.
Challa
,
V.
,
Misra
,
R.
,
Somani
,
M.
, and
Wang
,
Z.
,
2016
, “
Influence of Grain Structure on the Deformation Mechanism in Martensitic Shear Reversion-Induced Fe-16Cr-10Ni Model Austenitic Alloy with Low Interstitial Content: Coarse-Grained Versus Nano-Grained/Ultrafine-Grained Structure
,”
Mater. Sci Eng. A
,
661
, pp.
51
60
. 10.1016/j.msea.2016.03.002
36.
Guo
,
Z.
,
Lee
,
C.
, and
Morris Jr
,
J.
,
2004
, “
On Coherent Transformations in Steel
,”
Acta Mater.
,
52
(
19
), pp.
5511
5518
. 10.1016/j.actamat.2004.08.011
37.
De souza Neto
,
E.
,
Peric
,
D.
, and
Owen
,
D.
,
2008
,
Computational Methods for Plasticity—Theory and Applications
,
John Wiley and Sons Ltd.
,
West Sussex, UK
.
38.
Amberg
,
G.
,
Tönhardt
,
R.
, and
Winkler
,
C.
,
1999
, “
Finite Element Simulations Using Symbolic Computing
,”
Math. and Comp. Sim.
,
49
(
4–5
), pp.
257
274
. 10.1016/S0378-4754(99)00054-3
39.
Sandvik
,
B.
,
Martikainen
,
H.
, and
Lindroos
,
V.
,
1984
, “
The Crystallography and Microstructure of Lath Martensite Formed in Type 301 Stainless Steel
,”
Scripta Metall.
,
18
(
1
), pp.
81
86
. 10.1016/0036-9748(84)90094-2
40.
Kelly
,
P.
,
1965
, “
Martensite Transformation in Steels With Low Stacking Fault Energy
,”
Acta Metall.
,
13
(
6
), pp.
635
646
. 10.1016/0001-6160(65)90126-4
41.
Autodesk®. Inventor Software.
42.
Ansys Inc. ANSYS® Academic Research Mechanical, Release 18.1.
43.
Ghosh
,
S.
,
Mallick
,
P.
, and
Chattopadhyay
,
P.
,
2011
, “
Effect of Reversion of Strain Induced Martensite on Microstructure and Mechanical Properties in An Austenitic Stainless Steel
,”
J. Mater. Sci.
,
46
(
10
), pp.
3480
3487
. 10.1007/s10853-011-5253-x
44.
Järvenpää
,
A.
,
Jaskari
,
M.
,
Kisko
,
A.
, and
Karjalainen
,
P.
,
2020
, “
Processing and Properties of Reversion-Treated Austenitic Stainless Steels
,”
Metals
,
10
(
2
), pp.
1
43
.
You do not currently have access to this content.