Abstract

This study presents the elastic properties and nonlinear elasticity of the two-dimensional noncarbon nanomaterials of hexagonal lattice structures having molecular structure XY. Four nitride-based and two phosphide-based two-dimensional nanomaterials, having graphene-like hexagonal lattice structure, are considered in the present study. The four empirical parameters associated with the attractive and repulsive terms of the Tersoff–Brenner potential are calibrated for noncarbon nanomaterials and tested for elastic properties, nonlinear constitutive behavior, bending modulus, bending and torsional energy. The mathematical identities for the tangent constitutive matrix in terms of the interatomic potential function are derived through an atomistic–continuum coupled multiscale framework of the extended version of Cauchy–Born rule. The results obtained using newly calibrated empirical parameters for cohesive energy, bond length, elastic properties, and bending rigidity are compared with those reported in the literature through experimental investigations and quantum mechanical calculations. The continuum approximation is attained through the finite element method. Multiscale evaluations for elastic properties and nonlinear stretching of the nanosheets under in-plane loads are also compared with those obtained from atomistic simulations.

References

References
1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
. 10.1038/354056a0
2.
Gaffney
,
A. M.
,
Santos-Martinez
,
M. J.
,
Satti
,
A.
,
Major
,
T. C.
,
Wynne
,
K. J.
,
Gun'ko
,
Y. K.
,
Annich
,
G. M.
,
Elia
,
G.
, and
Radomski
,
M. W.
,
2015
, “
Blood Biocompatibility of Surface-Bound Multiwalled Carbon Nanotubes
,”
Nanomed. Nanotechnol. Biol. Med.
,
11
(
1
), pp.
39
46
. 10.1016/j.nano.2014.07.005
3.
Lahiri
,
D.
,
Singh
,
V.
,
Li
,
L. H.
,
Xing
,
T.
,
Seal
,
S.
,
Chen
,
Y.
, and
Agarwal
,
A.
,
2012
, “
Insight Into Reactions and Interface Between Boron Nitride Nanotube and Aluminium
,”
J. Mater. Res.
,
27
(
21
), pp.
2760
2770
. 10.1557/jmr.2012.294
4.
Özçelik
,
V. O.
,
Durgun
,
E.
, and
Ciraci
,
S.
,
2015
, “
Modulation of Electronic Properties in Laterally and Commensurately Repeating Graphene and Boron Nitride Composite Nanostructures
,”
J. Phys. Chem. C
,
119
(
23
), pp.
13248
13256
. 10.1021/acs.jpcc.5b01598
5.
Wechwithayakhlung
,
C.
,
Packwood
,
D. M.
,
Chaopaknam
,
J.
,
Worakajit
,
P.
,
Ittisanronnachai
,
S.
,
Chanlek
,
N.
,
Promarak
,
V.
,
Kongpatpanich
,
K.
,
Harding
,
D. J.
, and
Pattanasattayavong
,
P.
,
2019
, “
Tin (ii) Thiocyanate Sn (NCS) 2–A Wide Bandgap Coordination Polymer Semiconductor with a 2D Structure
,”
J. Mater. Chem. C
,
12
(
12
), pp.
3452
3462
. 10.1039/C8TC06150E
6.
Shur
,
M.
,
2019
, “
Wide Bandgap Semiconductor Technology: State-of-the-Art
,”
Solid-State Electron.
,
155
, pp.
65
75
. 10.1016/j.sse.2019.03.020
7.
Yu
,
D. P.
,
Sun
,
X. S.
,
Lee
,
C. S.
,
Bello
,
I.
,
Lee
,
S. T.
,
Gu
,
H. D.
,
Leung
,
K. M.
,
Zhou
,
G. W.
,
Dong
,
Z. F.
, and
Zhang
,
Z.
,
1998
, “
Synthesis of Boron Nitride Nanotubes by Means of Excimer Laser Ablation at High Temperature
,”
Appl. Phys. Lett.
,
72
(
16
), pp.
1966
1968
. 10.1063/1.121236
8.
Chen
,
Y.
,
Zou
,
J.
,
Campbell
,
S. J.
, and
Le Caer
,
G.
,
2004
, “
Boron Nitride Nanotubes: Pronounced Resistance to Oxidation
,”
Appl. Phys. Lett.
,
84
(
13
), pp.
2430
2432
. 10.1063/1.1667278
9.
Hernandez
,
E.
,
Goze
,
C.
,
Bernier
,
P.
, and
Rubio
,
A.
,
1998
, “
Elastic Properties of C and BxCyNz Composite Nanotubes
,”
Phys. Rev. Lett.
,
80
(
20
), pp.
4502
4505
. 10.1103/PhysRevLett.80.4502
10.
Kudin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
,
2001
, “
C2F, BN, and C Nanoshell Elasticity From ab Initio Computations
,”
Phys. Rev. B
,
64
(
23
), p.
235406
. 10.1103/PhysRevB.64.235406
11.
Akdim
,
B.
,
Pachter
,
R.
,
Duan
,
X.
, and
Adams
,
W. W.
,
2003
, “
Comparative Theoretical Study of Single-Wall Carbon and Boron-Nitride Nanotubes
,”
Phys. Rev. B
,
67
(
24
), p.
245404
. 10.1103/PhysRevB.67.245404
12.
Peng
,
Q.
,
Ji
,
W.
, and
De
,
S.
,
2012
, “
Mechanical Properties of the Hexagonal Boron Nitride Monolayer: Ab Initio Study
,”
Comput. Mater. Sci.
,
56
, pp.
11
17
. 10.1016/j.commatsci.2011.12.029
13.
Şahin
,
H.
,
Cahangirov
,
S.
,
Topsakal
,
M.
,
Bekaroglu
,
E.
,
Akturk
,
E.
,
Senger
,
R. T.
, and
Ciraci
,
S.
,
2009
, “
Monolayer Honeycomb Structures of Group-IV Elements and III-V Binary Compounds: First-Principles Calculations
,”
Phys. Rev. B
,
80
(
15
), p.
155453
. 10.1103/PhysRevB.80.155453
14.
Singh
,
A. K.
,
Zhuang
,
H. L.
, and
Hennig
,
R. G.
,
2014
, “
Ab Initio Synthesis of Single-Layer III-V Materials
,”
Phys. Rev. B
,
89
(
24
), p.
245431
. 10.1103/PhysRevB.89.245431
15.
Kochaev
,
A.
,
2017
, “
Elastic Properties of Noncarbon Nanotubes as Compared to Carbon Nanotubes
,”
Phys. Rev. B
,
96
(
15
), p.
155428
. 10.1103/PhysRevB.96.155428
16.
Ghasemzadeh
,
F.
, and
Kanjouri
,
F.
,
2018
, “
Strain Effect on the Electronic Properties of III-Nitride Nanosheets: Ab-initio Study
,”
Sci. China Technol. Sci.
,
61
(
4
), pp.
535
541
. 10.1007/s11431-017-9177-1
17.
Peng
,
Q.
,
Chen
,
X. J.
,
Liu
,
S.
, and
De
,
S.
,
2013
, “
Mechanical Stabilities and Properties of Graphene-Like Aluminum Nitride Predicted From First-Principles Calculations
,”
RSC Adv.
,
3
(
19
), pp.
7083
7092
. 10.1039/c3ra40841h
18.
Jafari
,
H.
,
Ravan
,
B. A.
, and
Faghihnasiri
,
M.
,
2018
, “
Mechanical and Electronic Properties of Single-Layer TiN and AlN Under Strain
,”
Solid State Commun.
,
282
, pp.
21
27
. 10.1016/j.ssc.2018.07.010
19.
Hao
,
J. H.
,
Wang
,
Y. F.
,
Yin
,
Y. H.
,
Jiang
,
R.
,
Wang
,
Y. F.
, and
Jin
,
Q. H.
,
2015
, “
An Ab initio Study of the Size-Dependent Mechanical Behavior of Single-Walled AlN Nanotubes
,”
Solid State Sci.
,
45
, pp.
30
34
. 10.1016/j.solidstatesciences.2015.05.001
20.
Zhou
,
Z.
,
Zhao
,
J.
,
Chen
,
Y.
,
von Ragué Schleyer
,
P.
, and
Chen
,
Z.
,
2007
, “
Energetics and Electronic Structures of AlN Nanotubes/Wires and Their Potential Application as Ammonia Sensors
,”
Nanotechnology
,
18
(
42
), p.
424023
. 10.1088/0957-4484/18/42/424023
21.
Zhang
,
D.
, and
Zhang
,
R. Q.
,
2003
, “
Theoretical Prediction on Aluminium Nitride Nanotubes
,”
Chem. Phys. Lett.
,
371
(
3–4
), pp.
426
432
. 10.1016/S0009-2614(03)00289-6
22.
Peng
,
Q.
,
Liang
,
C.
,
Ji
,
W.
, and
De
,
S.
,
2013
, “
Mechanical Properties of g-GaN: A First-Principles Study
,”
Appl. Phys. A
,
113
(
2
), pp.
483
490
. 10.1007/s00339-013-7551-4
23.
Qian
,
Z.
,
Hou
,
S.
,
Zhang
,
J.
,
Li
,
R.
,
Shen
,
Z.
,
Zhao
,
X.
, and
Xue
,
Z.
,
2005
, “
Stability and Electronic Structure of Single-Walled InN Nanotubes
,”
Physica E Low Dimens. Syst. Nanostruct.
,
30
(
1–2
), pp.
81
85
. 10.1016/j.physe.2005.07.002
24.
Peng
,
Q.
,
Sun
,
X.
,
Wang
,
H.
,
Yang
,
Y.
,
Wen
,
X.
,
Huang
,
C.
,
Liu
,
S.
, and
De
,
S.
,
2017
, “
Theoretical Prediction of a Graphene-Like Structure of Indium Nitride: A Promising Excellent Material for Optoelectronics
,”
Appl. Mater. Today
,
7
, pp.
169
178
. 10.1016/j.apmt.2017.03.001
25.
Ren
,
M.
,
Li
,
M.
,
Zhang
,
C.
,
Yuan
,
M.
,
Li
,
P.
,
Li
,
F.
,
Ji
,
W.
, and
Liu
,
X.
,
2015
, “
First-Principles Study on the Electronic and Magnetic Properties of InN Nanosheets Doped With 2p Elements
,”
Physica E Low Dimens. Syst. Nanostruct.
,
67
, pp.
1
6
. 10.1016/j.physe.2014.10.036
26.
Zhuang
,
H. L.
, and
Hennig
,
R. G.
,
2012
, “
Electronic Structures of Single-Layer Boron Pnictides
,”
Appl. Phys. Lett.
,
101
(
15
), p.
153109
. 10.1063/1.4758465
27.
Zhu
,
Z.
,
Cai
,
X.
,
Niu
,
C.
,
Wang
,
C.
, and
Jia
,
Y.
,
2016
, “
Computational Prediction of the Diversity of Monolayer Boron Phosphide Allotropes
,”
Appl. Phys. Lett.
,
109
(
15
), p.
153107
. 10.1063/1.4964763
28.
Wang
,
Y.
,
Huang
,
C.
,
Li
,
D.
,
Li
,
P.
,
Yu
,
J.
,
Zhang
,
Y.
, and
Xu
,
J.
,
2019
, “
Tight-Binding Model for the Electronic Structure of Hexagonal Boron Phosphide Monolayer and Bilayer
,”
J. Phys.: Condens. Matter
,
31
(
28
), p.
285501
. 10.1088/1361-648X/ab1528
29.
Lisenkov
,
S. V.
,
Vinogradov
,
G. A.
, and
Lebedev
,
N. G.
,
2005
, “
A new Class of Noncarbon AlP Nanotubes: Structure and Electronic Properties
,”
J. Exp. Theor. Phys. Lett.
,
81
(
4
), pp.
185
189
. 10.1134/1.1914878
30.
Albe
,
K.
, and
Möller
,
W.
,
1998
, “
Modelling of Boron Nitride: Atomic-Scale Simulations on Thin-Film Growth
,”
Comput. Mater. Sci.
,
10
(
1–4
), pp.
111
115
. 10.1016/S0927-0256(97)00172-9
31.
Benkabou
,
F.
,
Certier
,
M.
, and
Aourag
,
H.
,
2003
, “
Elastic Properties of Zinc-Blende GaN, AlN and InN From Molecular Dynamics
,”
Mol. Simul.
,
29
(
3
), pp.
201
209
. 10.1080/0892702021000049673
32.
Tungare
,
M.
,
Shi
,
Y.
,
Tripathi
,
N.
,
Suvarna
,
P.
, and
Shahedipour-Sandvik
,
F.
,
2011
, “
A Tersoff-Based Interatomic Potential for Wurtzite AlN
,”
Physica Status Solidi
,
208
(
7
), pp.
1569
1572
. 10.1002/pssa.201001086
33.
Kang
,
J. W.
, and
Hwang
,
H. J.
,
2004
, “
Molecular Dynamics Simulations of Single-Wall GaN Nanotubes
,”
Mol. Simul.
,
30
(
1
), pp.
29
35
. 10.1080/0892-7020310001596223
34.
Jeng
,
Y. R.
,
Tsai
,
P. C.
, and
Fang
,
T. H.
,
2004
, “
Molecular Dynamics Investigation of the Mechanical Properties of Gallium Nitride Nanotubes Under Tension and Fatigue
,”
Nanotechnology
,
15
(
12
), pp.
1737
1744
. 10.1088/0957-4484/15/12/006
35.
Kang
,
J. W.
, and
Hwang
,
H. J.
,
2004
, “
Atomistic Study of III-Nitride Nanotubes
,”
Comput. Mater. Sci.
,
31
(
3–4
), pp.
237
246
. 10.1016/j.commatsci.2004.03.004
36.
Moon
,
W. H.
, and
Hwang
,
H. J.
,
2004
, “
Molecular-Dynamics Simulation of Structure and Thermal Behaviour of Boron Nitride Nanotubes
,”
Nanotechnology
,
15
(
5
), pp.
431
434
. 10.1088/0957-4484/15/5/005
37.
Sekkal
,
W.
,
Bouhafs
,
B.
,
Aourag
,
H.
, and
Certier
,
M.
,
1998
, “
Molecular-Dynamics Simulation of Structural and Thermodynamic Properties of Boron Nitride
,”
J. Phys.: Condens. Matter
,
10
(
23
), pp.
4975
4984
. 10.1088/0953-8984/10/23/006
38.
Verma
,
V.
,
Jindal
,
V. K.
, and
Dharamvir
,
K.
,
2007
, “
Elastic Moduli of a Boron Nitride Nanotube
,”
Nanotechnology
,
18
(
43
), p.
435711
. 10.1088/0957-4484/18/43/435711
39.
Powell
,
D.
,
2006
, “
Elasticity, Lattice Dynamics and Parametrisation Techniques for the Tersoff Potential Applied to Elemental III-V Semiconductors
,”
PhD thesis
, University of Sheffield, UK.
40.
Liao
,
M. L.
,
Wang
,
Y. C.
,
Ju
,
S. P.
,
Lien
,
T. W.
, and
Huang
,
L. F.
,
2011
, “
Deformation Behaviours of an Armchair Boron-Nitride Nanotube Under Axial Tensile Strains
,”
J. Appl. Phys.
,
110
(
5
), p.
054310
. 10.1063/1.3626065
41.
Sevik
,
C.
,
Kinaci
,
A.
,
Haskins
,
J. B.
, and
Çağın
,
T.
,
2011
, “
Characterization of Thermal Transport in Low-Dimensional Boron Nitride Nanostructures
,”
Phys. Rev. B
,
84
(
8
), p.
085409
. 10.1103/PhysRevB.84.085409
42.
Los
,
J. H.
,
Kroes
,
J. M. H.
,
Albe
,
K.
,
Gordillo
,
R. M.
,
Katsnelson
,
M. I.
, and
Fasolino
,
A.
,
2017
, “
Extended Tersoff Potential for Boron Nitride: Energetics and Elastic Properties of Pristine and Defective h-BN
,”
Phys. Rev. B
,
96
(
18
), p.
184108
. 10.1103/PhysRevB.96.184108
43.
Kumar
,
R.
,
Rajasekaran
,
G.
, and
Parashar
,
A.
,
2016
, “
Optimised Cut-off Function for Tersoff-Like Potentials for a BN Nanosheet: A Molecular Dynamics Study
,”
Nanotechnology
,
27
(
8
), p.
085706
. 10.1088/0957-4484/27/8/085706
44.
Boldrin
,
L.
,
Scarpa
,
F.
,
Chowdhury
,
R.
, and
Adhikari
,
S.
,
2011
, “
Effective Mechanical Properties of Hexagonal Boron Nitride Nanosheets
,”
Nanotechnology
,
22
(
50
), p.
505702
. 10.1088/0957-4484/22/50/505702
45.
Jiang
,
L.
, and
Guo
,
W.
,
2016
, “
Analytical Solutions for Elastic Binary Nanotubes of Arbitrary Chirality
,”
Acta Mech. Sin.
,
32
(
6
), pp.
1046
1057
. 10.1007/s10409-016-0581-3
46.
Oh
,
E. S.
,
2010
, “
Elastic Properties of Boron-Nitride Nanotubes Through the Continuum Lattice Approach
,”
Mater. Lett.
,
64
(
7
), pp.
859
862
. 10.1016/j.matlet.2010.01.041
47.
Singh
,
S.
,
2020
, “
Critical Assessment of the Interatomic Potentials for the Elastic Properties of the Noncarbon Monolayer Nanomaterials
,”
Comput. Mater. Sci.
,
177
, p.
109550
. 10.1016/j.commatsci.2020.109550
48.
Tersoff
,
J.
,
1988
, “
A New Empirical Approach for the Structure and Energy of Covalent Systems
,”
Phys. Rev. B
,
37
(
12
), pp.
6991
7000
. 10.1103/PhysRevB.37.6991
49.
Zhuang
,
H. L.
,
Singh
,
A. K.
, and
Hennig
,
R. G.
,
2013
, “
Computational Discovery of Single-Layer III-V Materials
,”
Phys. Rev. B
,
87
(
16
), p.
165415
. 10.1103/PhysRevB.87.165415
50.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapour Deposition of Diamond Films
,”
Phys. Rev. B
,
42
(
15
), pp.
9458
9471
. 10.1103/PhysRevB.42.9458
51.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
,
2006
, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
74
(
24
), p.
245413
. 10.1103/PhysRevB.74.245413
52.
Singh
,
S.
, and
Patel
,
B. P.
,
2018
, “
Effect of Initial Strain and Material Nonlinearity on the Nonlinear Static and Dynamic Response of Graphene Sheets
,”
J. Sound Vib.
,
423
, pp.
373
400
. 10.1016/j.jsv.2018.02.059
53.
Singh
,
S.
, and
Patel
,
B. P.
,
2018
, “
Large Deformation Static and Dynamic Response of Carbon Nanotubes by Mixed Atomistic and Continuum Models
,”
Int. J. Mech. Sci.
,
135
, pp.
565
581
. 10.1016/j.ijmecsci.2017.11.041
54.
Singh
,
S.
, and
Patel
,
B. P.
,
2015
, “
Atomistic–Continuum Coupled Model for Nonlinear Analysis of Single-Layer Graphene Sheets
,”
Int. J. Non-Linear Mech.
,
76
, pp.
112
119
. 10.1016/j.ijnonlinmec.2015.06.008
55.
Singh
,
S.
,
2019
, “
Refined Multiscale Model Based on the Second Generation Interatomic Potential for the Mechanics of Graphene Sheets
,”
Mech. Mater.
,
133
, pp.
26
36
. 10.1016/j.mechmat.2019.03.004
56.
Singh
,
S.
,
2019
, “
Exploring the Effect of Dihedral Energy on the Nonlinear Mechanics of the Carbon Nanotubes Using Multiscale Modelling
,”
ASME J. Vib. Acoust.
,
141
(
4
), p.
041018
. 10.1115/1.4043242
57.
Neumann
,
H.
,
1995
, “
Properties of Group III-Nitrides
,”
Cryst. Res. Technol.
,
30
(
7
), p.
910
. 10.1002/crat.2170300704
58.
Camacho-Mojica
,
D. C.
, and
López-Urías
,
F.
,
2015
, GaN Haeckelite Single-Layered Nanostructures: Monolayer and Nanotubes. Scientific Reports 5, 17902.
59.
Mokhalingam
,
A.
,
Ghaffari
,
R.
,
Sauer
,
R. A.
, and
Gupta
,
S. S.
,
2020
, “
Comparing Quantum, Molecular and Continuum Models for Graphene at Large Deformations
,”
Carbon
,
159
, pp.
478
494
. 10.1016/j.carbon.2019.12.014
60.
Blevins
,
R. D.
,
1979
,
Formulas for Natural Frequency and Mode Shapes
,
Van Nostrand Reinhold Company
.
You do not currently have access to this content.