Abstract

The dynamic fracture behavior of brittle materials that contain micro-level cracks should be examined when material subjected to impact loading. We investigated the effect of micro-cracks on the propagation of macro-cracks that initiate from notch tips in the Kalthoff–Winkler experiment, a classical impact problem. To define predefined micro-cracks in three-dimensional space, we proposed a two-dimensional micro-crack plane definition in the bond-based peridynamics (PD) that is a non-local form of classical continuum theory. Randomly distributed micro-cracks with different number densities in a constant area and number in expending area models were examined to monitor the toughening of the material. The velocities of macro-crack propagation and the time required for completing fractures were considered in several predefined micro-cracks cases. It has been observed that toughening mechanism is only initiated by exceeding a certain number of micro-cracks; therefore, there is a positive correlation between the density of predefined micro-cracks and macro-crack propagation rate and, also, toughening mechanism.

References

References
1.
Hutchinson
,
J. W.
,
1987
, “
Crack Tip Shielding by Micro-Cracking in Brittle Solids
,”
Acta Metall.
,
35
(
7
), pp.
1605
1619
. 10.1016/0001-6160(87)90108-8
2.
Zhou
,
T.
,
Huang
,
C.
,
Liu
,
H.
,
Wang
,
J.
,
Zou
,
B.
, and
Zhu
,
H.
,
2012
, “
Crack Propagation Simulation in Microstructure of Ceramic Tool Materials
,”
Comput. Mater. Sci.
,
54
(
1
), pp.
150
156
. 10.1016/j.commatsci.2011.10.039
3.
Vazic
,
B.
,
Wang
,
H.
,
Diyaroglu
,
C.
,
Oterkus
,
S.
, and
Oterkus
,
E.
,
2017
, “
Dynamic Propagation of a Macrocrack Interacting With Parallel Small Cracks
,”
AIMS Mater. Sci.
,
4
(
1
), pp.
118
136
. 10.3934/matersci.2017.1.118
4.
Basoglu
,
M. F.
,
Zerin
,
Z.
,
Kefal
,
A.
, and
Oterkus
,
E.
,
2019
, “
A Computational Model of Peridynamic Theory for Deflecting Behavior of Crack Propagation With Micro-Cracks
,”
Comput. Mater. Sci.
,
162
(
1
), pp.
33
46
. 10.1016/j.commatsci.2019.02.032
5.
Li
,
X.
,
Yang
,
H.
,
Zan
,
X.
,
Li
,
X.
, and
Jiang
,
X.
,
2018
, “
Effect of a Micro-Crack on the Kinked Macro-Crack
,”
Theor. Appl. Fract. Mec.
,
96
(
1
), pp.
468
475
. 10.1016/j.tafmec.2018.04.003
6.
Loehnert
,
S.
, and
Belytschko
,
T.
,
2007
, “
Crack Shielding and Amplification due to Multiple Microcracks Interacting With a Macrocrack
,”
Int. J. Fract.
,
145
(
1
), pp.
1
8
. 10.1007/s10704-007-9094-1
7.
Brencich
,
A.
, and
Carpinteri
,
A.
,
1998
, “
Stress Field Interaction and Strain Energy Distribution Between a Stationary Main Crack and Its Process Zone
,”
Eng. Fract. Mech.
,
59
(
6
), pp.
797
814
. 10.1016/S0013-7944(97)00158-6
8.
Bleyer
,
J.
,
Roux-Langlois
,
C.
, and
Molinari
,
J. F.
,
2017
, “
Dynamic Crack Propagation With a Variational Phase-Field Model: Limiting Speed, Crack Branching and Velocity-Toughening Mechanisms
,”
Int. J. Fract.
,
204
(
1
), pp.
79
100
. 10.1007/s10704-016-0163-1
9.
Rose
,
L. R. F.
,
1986
, “
Effective Fracture Toughness of Microcracked Materials
,”
J. Am. Ceram. Soc.
,
69
(
3
), pp.
212
214
. 10.1111/j.1151-2916.1986.tb07409.x
10.
Li
,
X.
,
Li
,
X.
, and
Jiang
,
X.
,
2017
, “
Influence of a Micro-Crack on the Finite Macro-Crack
,”
Eng. Fract. Mech.
,
177
, pp.
95
103
. 10.1016/j.engfracmech.2017.03.037
11.
Xiaotao
,
L.
,
Xu
,
L.
,
Hongda
,
Y.
, and
Xiaoyu
,
J.
,
2017
, “
Effect of Micro-Cracks on Plastic Zone Ahead of the Macro-Crack Tip
,”
J. Mater. Sci.
,
52
(
23
), pp.
13490
13503
. 10.1007/s10853-017-1440-8
12.
Rubinstein
,
A. A.
,
1985
, “
Macrocrack Interaction With Semi-Infinite Microcrack Array
,”
Int. J. Fract.
,
27
(
2
), pp.
113
119
.
13.
Ducourthial
,
E.
,
Bouchaud
,
E.
, and
Chaboche
,
J. L.
,
2000
, “
Influence of Microcracks on a Propagation of Macrocracks
,”
Comput. Mater. Sci.
,
19
(
1–4
), pp.
229
234
. 10.1016/S0927-0256(00)00159-2
14.
Petrova
,
V.
,
Tamuzs
,
V.
, and
Romalis
,
N.
,
2000
, “
A Survey of Macro-Microcrack Interaction Problems
,”
ASME Appl. Mech. Rev.
,
53
(
5
), pp.
117
146
. 10.1115/1.3097344
15.
Soh
,
A. K.
, and
Yang
,
C. H.
,
2004
, “
Numerical Modeling of Interactions Between a Macro-Crack and a Cluster of Micro-Defects
,”
Eng. Fract. Mech.
,
71
(
2
), pp.
193
217
. 10.1016/S0013-7944(03)00097-3
16.
Kumar
,
S.
, and
Curtin
,
W. A.
,
2007
, “
Crack Interaction With Microstructure
,”
Mater. Today
,
10
(
9
), pp.
34
44
. 10.1016/S1369-7021(07)70207-9
17.
Gong
,
S. X.
,
1994
, “
Microcrack Interaction with a Finite Main Crack: An Exact Formulation
,”
Int. J. Fract.
,
66
(
3
), pp.
R51
R56
. 10.1007/BF00042592
18.
Laures
,
J. P.
, and
Kachanov
,
M.
,
1991
, “
Three-Dimensional Interactions of a Crack Front With Arrays of Penny-Shaped Microcracks
,”
Int. J. Fract.
,
48
(
4
), pp.
255
279
. 10.1007/BF00012916
19.
Tamuzs
,
V. P.
, and
Petrova
,
V. E.
,
2002
, “
On Macrocrack-Microdefect Interaction
,”
Int. Appl. Mech.
,
38
(
10
), pp.
1157
1177
. 10.1023/A:1022250111016
20.
Lorentz
,
E.
,
2008
, “
A Mixed Interface Finite Element for Cohesive Zone Models
,”
Comput. Meth. Appl. Mech. Eng.
,
198
(
2
), pp.
302
317
. 10.1016/j.cma.2008.08.006
21.
Unosson
,
M.
,
Olovsson
,
L.
, and
Simonsson
,
K.
,
2006
, “
Failure Modelling in Finite Element Analyses: Element Erosion With Crack-Tip Enhancement
,”
Finite Elem. Anal. Des.
,
42
(
4
), pp.
283
297
. 10.1016/j.finel.2005.07.001
22.
Lancaster
,
I. M.
,
Khalid
,
H. A.
, and
Kougioumtzoglou
,
I. A.
,
2013
, “
Extended FEM Modelling of Crack Propagation Using the Semi-Circular Bending Test
,”
Constr. Build. Mater.
,
48
(
1
), pp.
270
277
. 10.1016/j.conbuildmat.2013.06.046
23.
Zhou
,
X.
,
Wang
,
Y.
, and
Qian
,
Q.
,
2016
, “
Numerical Simulation of Crack Curving and Branching in Brittle Materials Under Dynamic Loads Using the Extended Non-Ordinary State-Based Peridynamics
,”
Eur. J. Mech. A. Solids
,
60
(
1
), pp.
277
299
. 10.1016/j.euromechsol.2016.08.009
24.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
. 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
25.
Belytschko
,
T.
,
Chen
,
H.
,
Xu
,
J.
, and
Zi
,
G.
,
2003
, “
Dynamic Crack Propagation Based on Loss of Hyperbolicity and a New Discontinuous Enrichment
,”
Int. J. Numer. Methods Eng.
,
58
(
12
), pp.
1873
1905
. 10.1002/nme.941
26.
Budyn
,
É
,
Zi
,
G.
,
Moës
,
N.
, and
Belytschko
,
T.
,
2004
, “
A Method for Multiple Crack Growth in Brittle Materials Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
61
(
10
), pp.
1741
1770
. 10.1002/nme.1130
27.
Zhuang
,
Z.
, and
Cheng
,
B. B.
,
2011
, “
Equilibrium State of Mode-I Sub-Interfacial Crack Growth in Bi-Materials
,”
Int. J. Fract.
,
170
(
1
), pp.
27
36
. 10.1007/s10704-011-9599-5
28.
Zhuang
,
Z.
, and
Cheng
,
B. B.
,
2011
, “
Development of X-FEM Methodology and Study on Mixed-Mode Crack Propagation
,”
Acta Mech. Sin.
,
27
(
3
), pp.
406
415
. 10.1007/s10409-011-0436-x
29.
Zhuang
,
Z.
, and
Cheng
,
B. B.
,
2011
, “
A Novel Enriched CB Shell Element Method for Simulating Arbitrary Crack Growth in Pipes
,”
Sci. China: Phys., Mech. Astron.
,
54
(
8
), pp.
1520
1531
. 10.1007/s11433-011-4385-y
30.
Wang
,
H.
,
Liu
,
Z.
,
Xu
,
D.
,
Zeng
,
Q.
,
Zhuang
,
Z.
, and
Chen
,
Z.
,
2016
, “
Extended Finite Element Method Analysis for Shielding and Amplification Effect of a Main Crack Interacted With a Group of Nearby Parallel Microcracks
,”
Int. J. Damage Mech.
,
25
(
1
), pp.
4
25
. 10.1177/1056789514565933
31.
Huo
,
J.
,
Zhang
,
Z.
,
Meng
,
Z.
,
Xue
,
L.
,
Jia
,
G.
, and
Chen
,
J.
,
2019
, “
A Time-Integral Crack Propagation Model Considering Thickness Effect
,”
IEEE Access
,
7
(
1
), pp.
41078
41089
. 10.1109/ACCESS.2019.2906461
32.
Bobaru
,
F.
, and
Zhang
,
G.
,
2015
, “
Why do Cracks Branch? A Peridynamic Investigation of Dynamic Brittle Fracture
,”
Int. J. Fract.
,
196
(
1–2
), pp.
59
98
. 10.1007/s10704-015-0056-8
33.
Rabczuk
,
T.
,
Zi
,
G.
,
Bordas
,
S.
, and
Nguyen-Xuan
,
H.
,
2010
, “
A Simple and Robust Three-Dimensional Cracking-Particle Method Without Enrichment
,”
Comput. Meth. Appl. Mech. Eng.
,
199
(
37–40
), pp.
2437
2455
. 10.1016/j.cma.2010.03.031
34.
Kosteski
,
L.
,
Barrios D’Ambra
,
R.
, and
Iturrioz
,
I.
,
2012
, “
Crack Propagation in Elastic Solids Using the Truss-Like Discrete Element Method
,”
Int. J. Fract.
,
174
(
2
), pp.
139
161
. 10.1007/s10704-012-9684-4
35.
Braun
,
M.
, and
Fernández-Sáez
,
J.
,
2014
, “
A New 2D Discrete Model Applied to Dynamic Crack Propagation in Brittle Materials
,”
Int. J. Solids Struct.
,
51
(
21–22
), pp.
3787
3797
. 10.1016/j.ijsolstr.2014.07.014
36.
Kalthoff
,
J. F.
, and
Winkler
,
S.
,
1988
, “
Failure Mode Transition of High Rates of Shear Loading
,”
Proceedings of the International Conference on Impact Loading and Dynamic Behavior of Materials
,
C. Y.
Chiem
,
H.-D.
Kunze
, and
L. W.
Meyer
, eds.,
Bremen
,
Germany, May 18–22, 1987
, Deutsche Gesellschaft für Metallkunde, DGM-Verlag, Oberursel, pp.
185
195
.
37.
Silling
,
S. A.
, and
Askari
,
E.
,
2005
, “
A Meshfree Method Based on the Peridynamic Model of Solid Mechanics
,”
Comput. Struct.
,
83
(
17–18
), pp.
1526
1535
. 10.1016/j.compstruc.2004.11.026
38.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
. 10.1016/S0022-5096(99)00029-0
39.
Javili
,
A.
,
Morasata
,
R.
,
Oterkus
,
E.
, and
Oterkus
,
S.
,
2019
, “
Peridynamics Review
,”
Math. Mech. Solids
,
24
(
11
), pp.
3714
3739
. 10.1177/1081286518803411
40.
Silling
,
S. A.
, and
Lehoucq
,
R. B.
,
2008
, “
Convergence of Peridynamics to Classical Elasticity Theory
,”
J. Elast.
,
93
(
1
), pp.
13
37
. 10.1007/s10659-008-9163-3
41.
Kilic
,
B.
, and
Madenci
,
E.
,
2010
, “
Coupling of Peridynamic Theory and the Finite Element Method
,”
J. Mech. Mater. Struct.
,
5
(
5
), pp.
707
733
. 10.2140/jomms.2010.5.707
42.
Oterkus
,
E.
,
Madenci
,
E.
,
Weckner
,
O.
,
Silling
,
S. A.
,
Bogert
,
P.
, and
Tessler
,
A.
,
2012
, “
Combined Finite Element and Peridynamic Analyses for Predicting Failure in a Stiffened Composite Curved Panel With a Central Slot
,”
Compos. Struct.
,
94
(
3
), pp.
839
850
. 10.1016/j.compstruct.2011.07.019
43.
Bobaru
,
F.
,
Ha
,
Y. D.
, and
Hu
,
W.
,
2012
, “
Damage Progression From Impact in Layered Glass Modeled With Peridynamics
,”
Cent. Eur. J. Eng.
,
2
(
4
), pp.
551
561
. 10.2478/s13531-012-0020-6
44.
Ghajari
,
M.
,
Iannucci
,
L.
, and
Curtis
,
P.
,
2014
, “
A Peridynamic Material Model for the Analysis of Dynamic Crack Propagation in Orthotropic Media
,”
Comput. Meth. Appl. Mech. Eng.
,
276
(
1
), pp.
431
452
. 10.1016/j.cma.2014.04.002
45.
Oterkus
,
S.
,
Madenci
,
E.
, and
Agwai
,
A.
,
2014
, “
Fully Coupled Peridynamic Thermomechanics
,”
J. Mech. Phys. Solids
,
64
(
1
), pp.
1
23
. 10.1016/j.jmps.2013.10.011
46.
Oterkus
,
S.
,
Madenci
,
E.
, and
Agwai
,
A.
,
2014
, “
Peridynamic Thermal Diffusion
,”
J. Comput. Phys.
,
265
(
1
), pp.
71
96
. 10.1016/j.jcp.2014.01.027
47.
De Meo
,
D.
,
Russo
,
L.
, and
Oterkus
,
E.
,
2017
, “
Modeling of the Onset, Propagation, and Interaction of Multiple Cracks Generated From Corrosion Pits by Using Peridynamics
,”
ASME J. Eng. Mater. Technol.
,
139
(
4
), p.
041001
. 10.1115/1.4036443
48.
Diyaroglu
,
C.
,
Oterkus
,
E.
,
Madenci
,
E.
,
Rabczuk
,
T.
, and
Siddiq
,
A.
,
2016
, “
Peridynamic Modeling of Composite Laminates Under Explosive Loading
,”
Compos. Struct.
,
144
(
1
), pp.
14
23
. 10.1016/j.compstruct.2016.02.018
49.
Madenci
,
E.
, and
Oterkus
,
E.
,
2014
,
Peridynamic Theory and its Applications
,
Springer
,
New York
.
50.
Kalthoff
,
J. F.
,
2000
, “
Modes of Dynamic Shear Failure in Solids
,”
Int. J. Fract.
,
101
(
1–2
), pp.
1
31
. doi.org/10.1023/A:1007647800529
51.
Silling
,
S. A.
,
2003
, “Dynamic Fracture Modeling with a Meshfree Peridynamic Code,”
Computational Fluid and Solid Mechanics
, pp.
641
644
.
52.
Silling
,
S. A.
,
Epton
,
M.
,
Weckner
,
O.
,
Xu
,
J.
, and
Askari
,
E.
,
2007
, “
Peridynamic States and Constitutive Modeling
,”
J. Elast.
,
88
(
2
), pp.
151
184
. 10.1007/s10659-007-9125-1
53.
Ren
,
H.
,
Zhuang
,
X.
,
Cai
,
Y.
, and
Rabczuk
,
T.
,
2016
, “
Dual-Horizon Peridynamics
,”
Int. J. Numer. Methods Eng.
,
108
(
12
), pp.
1451
1476
. 10.1002/nme.5257
54.
Ren
,
H.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2017
, “
Dual-Horizon Peridynamics: A Stable Solution to Varying Horizons
,”
Comput. Meth. Appl. Mech. Eng.
,
318
(
1
), pp.
762
782
. 10.1016/j.cma.2016.12.031
55.
Amani
,
J.
,
Oterkus
,
E.
,
Areias
,
P.
,
Zi
,
G.
,
Nguyen-Thoi
,
T.
, and
Rabczuk
,
T.
,
2016
, “
A Non-Ordinary State-Based Peridynamics Formulation for Thermoplastic Fracture
,”
Int. J. Impact Eng.
,
87
(
1
), pp.
83
94
. 10.1016/j.ijimpeng.2015.06.019
56.
Gu
,
X.
,
Zhang
,
Q.
, and
Xia
,
X.
,
2017
, “
Voronoi-Based Peridynamics and Cracking Analysis With Adaptive Refinement
,”
Int. J. Numer. Methods Eng.
,
112
(
13
), pp.
2087
2109
. 10.1002/nme.5596
57.
Guo
,
J. S.
, and
Gao
,
W. C.
,
2019
, “
Study of the Kalthoff–Winkler Experiment Using an Ordinary State-Based Peridynamic Model Under Low Velocity Impact
,”
Adv. Mech. Eng.
,
11
(
5
), pp.
1
11
. 10.1177/1687814019852561
58.
Trask
,
N.
,
You
,
H.
,
Yu
,
Y.
, and
Parks
,
M. L.
,
2019
, “
An Asymptotically Compatible Meshfree Quadrature Rule for Nonlocal Problems With Applications to Peridynamics
,”
Comput. Meth. Appl. Mech. Eng.
,
343
(
1
), pp.
151
165
. 10.1016/j.cma.2018.08.016
59.
Wang
,
H.
,
Xu
,
Y.
, and
Huang
,
D.
,
2019
, “
A Non-Ordinary State-Based Peridynamic Formulation for Thermo-Visco-Plastic Deformation and Impact Fracture
,”
Int. J. Mech. Sci.
,
159
(
1
), pp.
336
344
. 10.1016/j.ijmecsci.2019.06.008
You do not currently have access to this content.