Abstract

Ductile iron (DI) owes many of its attractive mechanical properties to the graphite nodules in its structure. However, since galvanic coupling can occur between the graphite nodules and the matrix in aggressive environments, these nodules can, at the same time, reduce its corrosion resistance. In this study, composite carbide coatings were grown on the surface of GGG-80 using the thermoreactive diffusion (TRD) process. The process was carried out at 900, 1000, and 1100 °C for 1 h using nanosized Fe-V and Fe-Cr powders. The coatings were characterized by X-ray diffractometry (XRD), two-dimensional profilometry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and microhardness tests. The corrosion behavior of the coatings were evaluated in three different solutions (3.5 wt% NaCl, 5 wt% H2SO4, and 5 wt% HNO3) using electrochemical open-circuit potential (OCP) and potentiodynamic polarization measurements. Microstructures and hardness tests showed that the nodular graphite in the surface was dissolved at the TRD process temperatures and that a coating of 12–36 µm thickness and 2461–3200 HV0.05 hardness was obtained. The corrosion resistance of the composite coating was up to 10, 33.5, and 75 times higher than the uncoated GGG-80 in NaCl, H2SO4, and HNO3, respectively. The improvement in corrosion resistance was a direct result of the formation of complex carbides and the elimination of graphite nodules in the surface of the alloy.

References

References
1.
ASM Metals Handbook
,
1995
,
Properties and Selection: Iron; Steels and High Performance Alloys
, Vol.
1
, 10th ed.,
ASM International
,
Materials Park, OH
, p.
389
.
2.
Berns
,
H.
, and
Theisen
,
W.
,
2008
,
Ferrous Materials—Steel and Cast Iron
,
Springer
,
Berlin, Heidelberg
.
3.
Cavallini
,
M.
,
Di Bartolomeo
,
O.
, and
Iacoviello
,
F.
,
2008
, “
Fatigue Crack Propagation Damaging Micromechanisms in Ductile Cast Irons
,”
Eng. Fract. Mech.
,
75
(
3–4
), pp.
694
704
. 10.1016/j.engfracmech.2007.02.002
4.
Weng
,
Z.
,
Wang
,
A.
,
Wang
,
Y.
,
Xiong
,
D.
, and
Tang
,
H.
,
2016
, “
Diode Laser Cladding of Fe-Based Alloy on Ductile Cast Iron and Related Interfacial Behavior
,”
Surf. Coat. Technol.
,
286
, pp.
64
71
. 10.1016/j.surfcoat.2015.12.031
5.
Ceschini
,
L.
,
Campana
,
G.
,
Pagano
,
N.
, and
Angelini
,
V.
,
2016
, “
Effect of Laser Surface Treatment on the Dry Sliding Behaviour of the EN-GJS400-12 Ductile Cast Iron
,”
Tribol. Int.
,
104
, pp.
342
351
. 10.1016/j.triboint.2016.09.018
6.
Zeng
,
D.
,
Lu
,
L.
,
Zhang
,
N.
,
Zhang
,
Y.
, and
Zhang
,
J.
,
2017
, “
Investigation on the Scuffing Resistance of Ductile Cast Iron as Affected by Fine Particle Bombardment to Produce Surface Hardened Layer and Micro-Dimpled Surface
,”
Wear
,
378
, pp.
174
182
. 10.1016/j.wear.2017.02.046
7.
Stefanescu
,
D. M.
,
2005
, “
Solidification and Modeling of Cast Iron—A Short History of the Defining Moments
,”
Mater. Sci. Eng. A
,
413
, pp.
322
333
. 10.1016/j.msea.2005.08.180
8.
Theuwissen
,
K.
,
Lacaze
,
J.
, and
Laffont
,
L.
,
2016
, “
Structure of Graphite Precipitates in Cast Iron
,”
Carbon
,
96
, pp.
1120
1128
. 10.1016/j.carbon.2015.10.066
9.
Nickchi
,
T.
,
Rostron
,
P.
,
Barsoum
,
I.
, and
Alfantazi
,
A.
,
2019
, “
Measurement of Local Galvanic Surface Corrosion Using Scanning Electrochemical Microscopy on Ductile Cast Iron
,”
J. Mater. Sci.
,
54
(
12
), pp.
9213
9221
. 10.1007/s10853-019-03506-8
10.
Savin
,
C.
,
Nejneru
,
C.
,
Perju
,
M. C.
,
Bejinariu
,
C.
,
Burduhos-Nergis
,
D.
, and
Sandu
,
A. V.
,
2019
, “
Galvanic Corrosion of Ductile Cast Iron Coupled With Different Alloys in Synthetic Domestic Waste Water
,”
Rev. Chim.
,
70
(
2
), pp.
506
511
. 10.37358/RC.19.2.6945
11.
Kim
,
K. T.
,
Kim
,
H. W.
,
Chang
,
H. Y.
,
Lim
,
B. T.
,
Park
,
H. B.
, and
Kim
,
Y. S.
,
2015
, “
Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants
,”
Adv. Mater. Sci. Eng.
,
2015
, pp.
1
16
. 10.1155/2015/408138
12.
Akinribide
,
O. J.
,
Akinwamide
,
S. O.
,
Ajibola
,
O. O.
,
Obadele
, B. A.
,
Oluwagbenga Olusunle
,
S. O.
, and
Olubambi
,
P. A.
,
2019
, “
Corrosion Behavior of Ductile and Austempered Ductile Cast Iron in 0.01 M and 0.05 M NaCl Environments
,”
Procedia Manuf.
,
30
, pp.
167
172
. 10.1016/j.promfg.2019.02.024
13.
Reséndez
,
R. R.
,
Miramontes
,
J. A. C.
,
Casas
,
E. A.
,
de Jesús Pérez
,
M.
,
Arredondo
,
E. R.
,
Armenta
,
I. R.
, and
Calderón
,
F. A.
,
2017
, “
Effect of Temperature and Time of Austempering in Corrosion Resistance of Ductile Cast Irons Immersed in Acid Solutions
,”
ECS Trans.
,
76
(
1
), pp.
133
141
. 10.1149/07601.0133ecst
14.
Mohamed
,
T. F. H.
,
Abd
,
S. S.
,
Rehim
,
E.
, and
Ibrahim
,
M. A. M.
,
2017
, “
Improving the Corrosion Behavior of Ductile Cast Iron in Sulphuric Acid by Heat Treatment
,”
Der. Chem. Sin.
,
8
(
1000
), pp.
513
523
.
15.
Bonabi
,
S. F.
,
Ashrafizadeh
,
F.
,
Sanati
,
A.
, and
Nahvi
,
S. M.
,
2018
, “
Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate
,”
J. Therm. Spray Technol.
,
27
(
3
), pp.
524
537
. 10.1007/s11666-018-0694-2
16.
Bellini
,
C.
, and
Carlino
,
F.
,
2019
, “
Intermetallic Phase Kinetic Formation and Thermal Crack Development in Galvanized DCI
,”
Frattura ed Integrità Strutturale
,
13
(
48
), pp.
740
747
. 10.3221/IGF-ESIS.48.67
17.
Li
,
C.
,
Guan
,
Q.
,
Cai
,
J.
,
Zhang
,
C.
,
Lv
,
P.
, and
Jin
,
Y.
,
2018
, “
Surface Alloying of Gray Cast Iron With Chromium by High Current Pulsed Electron Beam Treatment
,”
Mater. Res. Express
,
5
(
6
), p.
066518
. 10.1088/2053-1591/aac92a
18.
Lin
,
C. K.
,
Hsu
,
C. H.
,
Cheng
,
Y. H.
,
Ou
,
K. L.
, and
Lee
,
S. L.
,
2015
, “
A Study on the Corrosion and Erosion Behavior of Electroless Nickel and TiAlN/ZrN Duplex Coatings on Ductile Iron
,”
Appl. Surf. Sci.
,
324
, pp.
13
19
. 10.1016/j.apsusc.2014.10.068
19.
Cheng
,
X.
,
Hu
,
S.
,
Song
,
W.
, and
Xiong
,
X.
,
2013
, “
Improvement in Corrosion Resistance of a Nodular Cast Iron Surface Modified by Plasma Beam Treatment
,”
Appl. Surf. Sci.
,
286
, pp.
334
343
. 10.1016/j.apsusc.2013.09.083
20.
Cheng
,
X.
,
Hu
,
S.-B.
,
Song
,
W.-L.
, and
Li
,
Z.
,
2014
, “
Surface Strengthening Treatment of Nodular Cast Iron by Plasma Beam
,”
J. Mater. Eng.
,
4
(
1
), pp.
12
18
. 10.1016/j.msea.2013.10.095
21.
Aigbodion
,
V. S.
,
Mohammed
,
V. A. O.
,
Yakubu
,
S. I.
, and
Agunsoye
,
J. O.
,
2007
, “
Corrosion Characteristics of Vanadium Alloyed Ductile Cast Iron in Nitric Acid
,”
J. Appl. Sci. Res.
,
4
(
10
), pp.
1267
1271
.
22.
Lou
,
D. C.
,
Akselsen
,
O. M.
,
Onsøien
,
M. I.
,
Solberg
,
J. K.
, and
Berget
,
J.
,
2006
, “
Surface Modification of Steel and Cast Iron to Improve Corrosion Resistance in Molten Aluminium
,”
Surf. Coat. Technol.
,
200
(
18–19
), pp.
5282
5288
. 10.1016/j.surfcoat.2005.06.026
23.
Arai
,
T.
,
2013
, “Thermo-Reactive Deposition and Diffusion Process,”
Encyclopedia of Tribology
, 1st ed.,
Y.-W.
Chung
, and
Q. J.
Wang
, eds.,
Springer
,
New York
, pp.
3655
3662
.
24.
Arai
,
T.
,
2015
,
Thermochemical Surface Engineering of Steels
,
Woodhead Publishing
,
Amsterdam
, pp.
703
735
.
25.
Günen
,
A.
,
Kanca
,
E.
,
Karakaş
,
M. S.
,
Koç
,
V.
,
Gök
,
M. S.
,
Kanca
,
Y.
,
Çürük
,
A.
, and
Demir
,
M.
,
2018
, “
High Temperature Wear Behavior of the Surface-Modified Externally Cooled Rolls
,”
Surf. Coat. Technol.
,
348
, pp.
130
141
. 10.1016/j.surfcoat.2018.04.071
26.
Chaliampalias
,
D.
,
Vourlias
,
G.
,
Pavlidou
,
E.
,
Skolianos
,
S.
,
Chrissafis
,
K.
, and
Stergioudis
,
G.
,
2009
, “
Comparative Examination of the Microstructure and High Temperature Oxidation Performance of NiCrBSi Flame Sprayed and Pack Cementation Coatings
,”
Appl. Surf. Sci.
,
255
(
6
), pp.
3605
3612
. 10.1016/j.apsusc.2008.10.006
27.
Ghadi
,
A.
,
Soltanieh
,
M.
,
Saghafian
,
H.
, and
Yang
,
Z. G.
,
2016
, “
Investigation of Chromium and Vanadium Carbide Composite Coatings on CK45 Steel by Thermal Reactive Diffusion
,”
Surf. Coat. Technol.
,
289
, pp.
1
10
. 10.1016/j.surfcoat.2016.01.048
28.
Ghadi
,
A.
,
Saghafian
,
H.
,
Soltanieh
,
M.
, and
Yang
,
Z. G.
,
2017
, “
Diffusion Mechanism in Molten Salt Baths During the Production of Carbide Coatings via Thermal Reactive Diffusion
,”
Int. J. Min. Met. Mater.
,
24
(
12
), pp.
1448
1458
. 10.1007/s12613-017-1538-7
29.
Sun
,
C.
,
Xue
,
Q.
,
Zhang
,
J.
,
Wan
,
S.
,
Tieu
,
A. K.
, and
Tran
,
B. H.
,
2018
, “
Growth Behavior and Mechanical Properties of Cr-V Composite Surface Layer on AISI D3 Steel by Thermal Reactive Deposition
,”
Vacuum
,
148
, pp.
158
167
. 10.1016/j.vacuum.2017.11.015
30.
Castillejo
,
F.
,
Olaya
,
J. J.
, and
Alfonso
,
J. E.
,
2019
, “
Wear and Corrosion Resistance of Chromium–Vanadium Carbide Coatings Produced via Thermo-Reactive Deposition
,”
Coatings
,
9
(
4
), p.
215
. 10.3390/coatings9040215
31.
Günen
,
A.
,
Kurt
,
B.
,
Milner
,
P.
, and
Gök
,
M. S.
,
2019
, “
Properties and Tribological Performance of Ceramic-Base Chromium and Vanadium Carbide Composite Coatings
,”
Int. J. Refract. Met. Hard Mater.
,
81
, pp.
333
344
. 10.1016/j.ijrmhm.2019.03.019
32.
Günen
,
A.
,
Karahan
,
İH
,
Karakaş
,
M. S.
,
Kurt
,
B.
,
Kanca
,
Y.
,
Çay
,
V. V.
, and
Yıldız
,
M.
,
2019
, “
Properties and Corrosion Resistance of AISI H13 Hot-Work Tool Steel With Borided B 4 C Powders
,”
Met. Mater. Int.
, pp.
1
12
. 10.1007/s12540-019-00421-0
33.
Günen
,
A.
,
Kanca
,
Y.
,
Karahan
,
İH
,
Karakaş
,
M. S.
,
Gök
,
M. S.
,
Kanca
,
E.
, and
Çürük
,
A.
,
2018
, “
A Comparative Study on the Effects of Different Thermochemical Coating Techniques on Corrosion Resistance of STKM-13A Steel
,”
Metall. Mater. Trans. A
,
49
(
11
), pp.
5833
5847
. 10.1007/s11661-018-4862-2
34.
Zammit
,
A.
,
Abela
,
S.
,
Betts
,
J. C.
,
Michalczewski
,
R.
,
Kalbarczyk
,
M.
, and
Grech
,
M.
,
2019
, “
Scuffing and Rolling Contact Fatigue Resistance of Discrete Laser Spot Hardened Austempered Ductile Iron
,”
Wear
,
422
, pp.
100
107
. 10.1016/j.wear.2019.01.061
35.
Dueñas
,
J. R.
,
Hormaza
,
W.
, and
Güiza
,
G. C.
,
2019
, “
Abrasion Resistance and Toughness of a Ductile Iron Produced by Two Molding Processes With a Short Austempering
,”
J. Mater. Res. Technol.
,
8
(
3
), pp.
2605
2612
. 10.1016/j.jmrt.2019.02.014
36.
Ortiz-Domínguez
,
M.
,
Cruz-Avilés
,
A.
,
Morgado-Gonzalez
,
I.
,
Cardoso-Legorreta
,
E.
,
Gómez-Vargas
,
O. A.
,
Solis-Romero
,
J.
, and
Coronel-Guerra
,
E.
,
2019
, “
Microstructural Characterization of Boride Layers on Gray Cast Iron and Ductile Cast Iron by Dehydrated Paste-Pack Boriding
,”
Microsc. Microanal.
,
25
(
S2
), pp.
682
683
. 10.1017/S1431927619004148
37.
Kulka
,
M.
,
Kulka
,
M.
, and
Castro
,
2019
,
Current Trends in Boriding
,
Springer International Publishing
,
Switzerland
.
38.
Mariani
,
F. E.
,
Soares
,
C.
,
Lombardi Neto
,
A.
,
Totten
,
G. E.
, and
Casteletti
,
L. C.
,
2018
, “
Boro-Austempering Treatment of Ductile Cast Irons
,”
Mater. Res.
,
21
(
5
). 10.1590/1980-5373-mr-2017-0927
39.
Karakaş
,
M. S.
,
Günen
,
A.
,
Kanca
,
E.
, and
Yilmaz
,
E.
,
2018
, “
Boride Layer Growth Kinetics of AISI H13 Steel Borided With Nano-Sized Powders
,”
Arch. Metall. Mater.
,
63
(
1
), pp.
159
165
. 10.24425/118923
40.
Biesuz
,
M.
, and
Sglavo
,
V. M.
,
2016
, “
Chromium and Vanadium Carbide and Nitride Coatings Obtained by TRD Techniques on UNI 42CrMoS4 (AISI 4140) Steel
,”
Surf. Coat. Technol.
,
286
, pp.
319
326
. 10.1016/j.surfcoat.2015.12.063
41.
Wang
,
B.
,
Liu
,
Y.
, and
Ye
,
J.
,
2013
, “
Mechanical Properties and Electronic Structures of VC, V4C3 and V8C7 From First Principles
,”
Phys. Scr.
,
88
(
1
), p.
015301
. 10.1088/0031-8949/88/01/015301
42.
Abad
,
M. D.
,
Sánchez-López
,
J. C.
,
Brizuela
,
M.
,
Garcia-Luis
,
A.
, and
Shtansky
,
D. V.
,
2010
, “
Influence of Carbon Chemical Bonding on the Tribological Behavior of Sputtered Nanocomposite TiBC/a-C Coatings
,”
Thin Solid Films
,
518
(
19
), pp.
5546
5552
. 10.1016/j.tsf.2010.04.038
43.
Mitterer
,
C.
,
Mayrhofer
,
P. H.
,
Beschliesser
,
M.
,
Losbichler
,
P.
,
Warbichler
,
P.
,
Hofer
,
F.
, and
Vlček
,
J.
,
1999
, “
Microstructure and Properties of Nanocomposite Ti–B–N and Ti–B–C Coatings
,”
Surf. Coat. Technol.
,
120
, pp.
405
411
. 10.1016/S0257-8972(99)00489-2
44.
Chattopadhyay
,
R.
,
2014
,
Green Tribology, Green Surface Engineering, and Global Warming
,
ASM International
,
Materials Park, OH
.
45.
Stern
,
M.
, and
Geary
,
A. L.
,
1957
, “
Electrochemical Polarization I. A Theoretical Analysis of the Shape of Polarization Curves
,”
J. Electrochem. Soc.
,
104
(
1
), pp.
56
63
. 10.1149/1.2428496
46.
Seikh
,
A. H.
,
Sarkar
,
A.
,
Singh
,
J. K.
,
Mohammed
,
S.
,
Khan
,
M. A.
,
Alharthi
,
N.
, and
Ghosh
,
M.
,
2019
, “
Corrosion Characteristics of Copper-Added Austempered Gray Cast Iron (AGCI)
,”
Materials
,
12
(
3
), p.
503
. 10.3390/ma12030503
47.
Waseda
,
Y.
, and
Waseda
,
Y.
,
2006
,”
Characterization of Corrosion Products on Steel Surfaces
, Vol.
1
,
S.
Suzuki
, ed.,
Springer
,
Berlin
.
48.
Sotelo-Mazón
,
O.
,
Cuevas-Arteaga
,
C.
,
Porcayo-Calderón
,
J.
,
Salinas Bravo
,
V. M.
, and
Izquierdo-Montalvo
,
G.
,
2014
, “
Corrosion Behavior of Pure Cr, Ni, and Fe Exposed to Molten Salts at High Temperature
,”
Adv. Mater. Sci. Eng.
,
2014
, pp.
1
12
. 10.1155/2014/923271
49.
Li
,
H.
,
Zou
,
S.
,
Dong
,
C.
,
Xiao
,
K.
,
Li
,
X.
, and
Zhong
,
P.
,
2017
, “
Passive Properties of Cr12Ni3Co12Mo4W Ultra-High-Strength Martensitic Stainless Steel
,”
Int. J. Electrochem. Sci.
,
12
(
1
), pp.
529
544
. 10.20964/2017.01.75
You do not currently have access to this content.