Abstract

The subject of this research was to monitor and evaluate the effect of X-rays and e-beam irradiation on the structure of nanoscaled TiO2 and its properties. The samples of nanoscaled TiO2 were synthesized using the sol–gel method and subsequently exposed to thermal treatment to obtain the anatase crystalline structure. X-ray powder diffraction (XRPD) and Raman spectroscopy revealed the following changes in the structure as a result of the e-beam and X-ray irradiation: a decrease in the size of the crystallite of TiO2, an increase of the distance between the crystalline planes and the lattice parameters as well as the achievement of a certain degree of amorphization. As a consequence of the structural changes, thermal stability decreased. Also, a shift of the light absorption toward the visible end of the spectrum was detected and the energy of the band gap was reduced, indicating a better photocatalytic activity, i.e., the photocatalytic action can be shifted to the region of the visible light.

References

References
1.
Diebold
,
U.
,
2003
, “
The Surface Science of Titanium Dioxide
,”
Surf. Sci. Rep.
,
48
(
5–8
), pp.
53
229
. 10.1016/S0167-5729(02)00100-0
2.
Chen
,
X.
, and
Mao
,
S. S.
,
2007
, “
Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications
,”
Chem. Rev.
,
107
(
7
), pp.
2891
2959
. 10.1021/cr0500535
3.
Pelaez
,
M.
,
Nolan
,
N. T.
,
Pillai
,
S. C.
,
Seery
,
M. K.
,
Falaras
,
P.
,
Kontos
,
A. G.
,
Dunlop
,
P. S. M.
,
Hamilton
,
J. W. J.
,
Byrne
,
J. A.
,
O’Shea
,
K.
,
Entezari
,
M. H.
, and
Dionysiou
,
D. D.
,
2012
, “
A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications
,”
Appl. Catal. B
,
125
, pp.
331
349
. 10.1016/j.apcatb.2012.05.036
4.
Banerjee
,
A. N.
,
2011
, “
The Design, Fabrication, and Photocatalytic Utility of Nanostructured Semiconductors: Focus on TiO2-Based Nanostructures
,”
Nanotechnol. Sci. Appl.
,
4
(
1
), pp.
35
65
. 10.2147/NSA.S9040
5.
Dai
,
K.
,
Peng
,
T.
,
Ke
,
D.
, and
Wei
,
B.
,
2009
, “
Photocatalytic Hydrogen Generation Using a Nanocomposite of Multi-Walled Carbon Nanotubes and TiO2 Nanoparticles Under Visible Light Irradiation
,”
Nanotechnology
,
20
(
12
), p.
125603
. 10.1088/0957-4484/20/12/125603
6.
Bak
,
T.
,
Li
,
W.
,
Nowotny
,
J.
,
Atanacio
,
A. J.
, and
Davis
,
J.
,
2015
, “
Photocatalytic Properties of TiO2: Evidence of the Key Role of Surface Active Sites in Water Oxidation
,”
J. Phys. Chem. A
,
119
(
36
), pp.
9465
9473
. 10.1021/acs.jpca.5b05031
7.
Zhang
,
J.
,
Zhou
,
P.
,
Liu
,
J.
, and
Yu
,
J.
,
2014
, “
New Understanding of the Difference of Photocatalytic Activity Among Anatase, Rutile and Brookite TiO2
,”
Phys. Chem. Chem. Phys.
,
16
(
38
), pp.
20382
20386
. 10.1039/C4CP02201G
8.
Banerjee
,
S.
,
Gopal
,
J.
,
Muraleedharan
,
P.
,
Tyagi
,
A. K.
, and
Raj
,
B.
,
2006
, “
Physics and Chemistry of Photocatalytic Titanium Dioxide: Visualization of Bactericidal Activity Using Atomic Force Microscopy
,”
Curr. Sci.
,
90
(
10
), pp.
1378
1383
.
9.
Luttrell
,
T.
,
Halpegamage
,
S.
,
Tao
,
J.
,
Kramer
,
A.
,
Sutter
,
E.
, and
Batzill
,
M.
,
2014
, “
Why is Anatase a Better Photocatalyst Than Rutile?—Model Studies on Epitaxial TiO2 Films
,”
Sci. Rep.
,
4
, p.
4043
. 10.1038/srep04043
10.
Zaleska
,
A.
,
2008
, “
Doped-TiO2: A Review
,”
Recent Pat. Eng.
,
2
(
3
), pp.
157
164
. 10.2174/187221208786306289
11.
Toyoda
,
M.
,
Yano
,
T.
,
Tryba
,
B.
,
Mozia
,
S.
,
Tsumura
,
T.
, and
Inagaki
,
M.
,
2009
, “
Preparation of Carbon-Coated Magneli Phases TinO2n–1 and Their Photocatalytic Activity Under Visible Light
,”
Appl. Catal. B
,
88
(
1–2
), pp.
160
164
. 10.1016/j.apcatb.2008.09.009
12.
An
,
H.
,
Park
,
S. Y.
,
Kim
,
H.
,
Lee
,
C. Y.
,
Choi
,
S.
,
Lee
,
S. C.
,
Seo
,
S.
,
Park
,
E. C.
,
Oh
,
Y.
,
Song
,
C.
,
Won
,
J.
,
Kim
,
Y. J.
,
Lee
,
J.
,
Lee
,
H. U.
, and
Lee
,
Y.
,
2016
, “
Advanced Nanoporous TiO2 Photocatalysts by Hydrogen Plasma for Efficient Solar-Light Photocatalytic Application
,”
Sci. Rep.
,
6
, p.
29683
. 10.1038/srep29683
13.
Kim
,
M. S.
,
Jo
,
W. J.
,
Lee
,
D.
,
Baeck
,
S.
,
Shin
,
J. H.
, and
Lee
,
B. C.
,
2013
, “
Enhanced Photocatalytic Activity of TiO2 Modified by e-Beam Irradiation
,”
Bull. Korean Chem. Soc.
,
34
(
5
), pp.
1397
1400
. 10.5012/bkcs.2013.34.5.1397
14.
Priyanka
,
K. P.
,
Joseph
,
S.
,
Sunny
,
A. T.
, and
Varghese
,
T.
,
2013
, “
Effect of High Energy Electron Beam Irradiation on the Optical Properties of Nanocrystalline TiO2
,”
Nanosyst. Phys. Chem. Math.
,
4
(
2
), pp.
218
224
.
15.
Diab
,
K. R.
,
Doheim
,
M. M.
,
Mahmoud
,
S. A.
,
Shama
,
S. A.
, and
El-Boohy
,
H. A.
,
2017
, “
Gamma-Irradiation Improves the Photocatalytic Activity of Fe/TiO2 for Photocatalytic Degradation of 2-Chlorophenol
,”
Chem. Mater. Res.
,
9
(
9
), pp.
49
60
.
16.
Holbert
K.E.
,
2008
, “
Radiation Effects and Damage. Dr. Holbert’s Course “EEE 598—Radiation Effects”, School of Electrical, Computer and Energy Engineering. Arizona State University
,” http://holbert.faculty.asu.edu/eee560/eee560.html
17.
Vasile
C.
, and
Butnaru
E.
,
2017
, “Radiation Chemistry of Organic Solids,”
Applications of Ionizing Radiation in Materials Processing
, Vol.
1
,
Y.
Sun
,
A. G.
Chmielewski
, eds.,
Institute of Nuclear Chemistry and Technology
,
Warsaw
, pp.
117
141
.
18.
Kashiwagi
,
M.
, and
Hoshi
,
Y.
,
2012
, “
Electron Beam Processing System and Its Application
,”
SEI Tech. Rev.
,
75
, pp.
47
54
.
19.
Wronski
,
P.
,
Surmacki
,
J.
,
Abramczyk
,
H.
,
Adamus
,
A.
,
Nowosielska
,
M.
,
Maniukiewicz
,
W.
,
Kozanecki
,
M.
, and
Szadkowska-Nicze
,
M.
,
2015
, “
Surface, Optical and Photocatalytic Properties of Silica-Supported TiO2 Treated With Electron Beam
,”
Radiat. Phys. Chem.
,
109
, pp.
40
47
. 10.1016/j.radphyschem.2014.12.009
20.
Latthe
,
S. S.
,
An
,
S.
,
Jin
,
S.
, and
Yoon
,
S. S.
,
2013
, “
High Energy Electron Beam Irradiated TiO2 Photoanodes for Improved Water Splitting
,”
J. Mater. Chem. A
,
1
(
43
), pp.
13567
13575
. 10.1039/c3ta13481d
21.
Jun
,
J.
,
Dhayal
,
M.
,
Shin
,
J.
,
Kim
,
J.
, and
Getoff
,
N.
,
2006
, “
Surface Properties and Photoactivity of TiO2 Treated With Electron Beam
,”
Radiat. Phys. Chem.
,
75
(
5
), pp.
583
589
. 10.1016/j.radphyschem.2005.10.015
22.
Hou
,
X.
, and
Liu
,
A.-D.
,
2008
, “
Modification of Photocatalytic TiO2 Thin Films by Electron Beam Irradiation
,”
Radiat. Phys. Chem.
,
77
(
3
), pp.
345
351
. 10.1016/j.radphyschem.2007.04.003
23.
Schmidt-Stein
,
F.
,
Hahn
,
R.
,
Gnichwitz
,
J.
,
Song
,
Y. Y.
,
Shrestha
,
N. K.
,
Hirsch
,
A.
, and
Schmuki
,
P.
,
2009
, “
X-Ray Induced Photocatalysis on TiO2 and TiO2 Nanotubes: Degradation of Organics and Drug Release
,”
Electrochem. Commun.
,
11
(
11
), pp.
2077
2080
. 10.1016/j.elecom.2009.08.036
24.
Molina Higgins
,
M. C.
, and
Rojas
,
J. V.
,
2019
, “
X-Ray Radiation Enhancement of Gold-TiO2 Nanocomposites
,”
Appl. Surf. Sci.
,
480
, pp.
1147
1155
. 10.1016/j.apsusc.2019.02.234
25.
Paunović
,
P.
,
Grozdanov
,
A.
,
Češnovar
,
A.
,
Ranguelov
,
B.
,
Makreski
,
P.
,
Gentile
,
G.
, and
Fidančevska
,
E.
,
2015
, “
Characterization of Nano-Scaled TiO2 Produced by Simplified Sol-Gel Method Using Organometallic Precursor
,”
ASME J. Eng. Mater. Technol.
,
137
(
2
), p.
021003
. 10.1115/1.4029112
26.
Češnovar
,
A.
,
Paunović
,
P.
,
Grozdanov
,
A.
,
Makreski
,
P.
, and
Fidančevska
,
E.
,
2012
, “
Preparation of Nano-Crystalline TiO2 by Sol-Gel Method Using Titanium Tetraisopropoxide (TTIP) as a Precursor
,”
Adv. Nat. Sci.: Theory Appl.
,
1
(
2
), pp.
133
142
.
27.
Cullity
,
B. D.
,
1978
,
Elements of X-Ray Diffraction
,
Addison-Wesley Publishing Company, Inc.
,
London, UK
.
28.
Castaldo
,
R.
,
Lama
,
G. C.
,
Aprea
,
P.
,
Gentile
,
G.
,
Ambrogi
,
V.
,
Lavorgna
,
M.
, and
Cerruti
,
P.
,
2019
, “
Humidity-Driven Mechanical and Electrical Response of Graphene/Cloisite Hybrid Films
,”
Adv. Funct. Mater.
,
29
(
14
), p.
1807744
. 10.1002/adfm.201807744
29.
Castaldo
,
R.
,
Lama
,
G. C.
,
Aprea
,
P.
,
Gentile
,
G.
,
Lavorgna
,
M.
,
Ambrogi
,
V.
, and
Cerruti
,
P.
,
2018
, “
Effect of the Oxidation Degree on Self-Assembly, Adsorption and Barrier Properties of Nano-Graphene
,”
Microporous Mesoporous Mater.
,
260
, pp.
102
115
. 10.1016/j.micromeso.2017.10.026
30.
Khan
,
M. M.
,
Ansari
,
S. A.
,
Pradhan
,
D.
,
Ansari
,
M. O.
,
Han
,
D. H.
,
Lee
,
J.
, and
Cho
,
M. H.
,
2014
, “
Band Gap Engineered TiO2 Nanoparticles for Visible Light Induced Photoelectrochemical and Photocatalytic Studies
,”
J. Mater. Chem. A
,
2
(
3
), pp.
637
644
. 10.1039/C3TA14052K
31.
Oshaka
,
T.
,
Izumi
,
F.
, and
Fujiki
,
Y.
,
1979
, “
Raman Spectrum of Anatase TiO2
,”
J. Raman Spectrosc.
,
7
(
6
), pp.
321
324
. 10.1002/jrs.1250070606
32.
Xu
,
C. Y.
,
Zhang
,
P. X.
, and
Yan
,
L.
,
2001
, “
Blue Shift of Raman Peak From Coated TiO2 Nanoparticles
,”
J. Raman Spectrosc.
,
32
(
10
), pp.
862
865
. 10.1002/jrs.773
33.
Choi
,
H. C.
,
Jung
,
Y. M.
, and
Kim
,
S. B.
,
2005
, “
Size Effects in the Raman Spectra of TiO2 Nanoparticles
,”
Vib. Spectrosc.
,
37
(
1
), pp.
33
38
. 10.1016/j.vibspec.2004.05.006
34.
Smith
,
K. A.
,
Savva
,
A. I.
,
Deng
,
C.
,
Wharry
,
J. P.
,
Hwang
,
S.
,
Su
,
D.
,
Wang
,
Y.
,
Gong
,
J.
,
Xu
,
T.
,
Buttf
,
D. P.
, and
Xiong
,
H.
,
2017
, “
Effects of Proton Irradiation on Structural and Electrochemical Charge Storage Properties of TiO2 Nanotube Electrodes for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
5
(
23
), pp.
11815
11824
. 10.1039/C7TA01026E
35.
So
,
W. W.
,
Park
,
S. B.
,
Kim
,
K. J.
,
Shin
,
C. H.
, and
Moon
,
S. J.
,
2001
, “
The Crystalline Phase Stability of Titania Particles Prepared at Room Temperature by the Sol-Gel Method
,”
J. Mater. Sci.
,
36
(
17
), pp.
4299
4305
. 10.1023/A:1017955408308
36.
Mehranpour
,
H.
,
Askari
,
M.
,
Sasani Ghamsari
,
M.
, and
Farzalibeik
,
H.
,
2010
, “
Study on the Phase Transformation Kinetics of Sol-Gel Drived TiO2 Nanoparticles
,”
J. Nanomater.
,
2010
(
6
), p.
626978
. 10.1155/2010/626978
37.
Lee
,
M. S.
,
Lee
,
G. D.
,
Park
,
S. S.
, and
Hong
,
S.-S.
,
2003
, “
Synthesis of TiO2 Nanoparticles in Reverse Microemulsion and Their Photocatalytic Activity
,”
J. Ind. Eng. Chem.
,
9
(
1
), pp.
89
95
.
38.
Dharma
J.
,
Pisal
A.
,
2012
,
UV/Vis/NIR Spectrometer, Application Note, PerkinElmer, Inc
.
Shelton, CT
, https://www.perkinelmer.com/lab-solutions/resources/docs/APP_UVVISNIRMeasureBandGapEnergyValue.pdf
39.
Kuznetsov
,
V. N.
, and
Serpone
,
N.
,
2009
, “
On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments
,”
J. Phys. Chem. C
,
113
(
34
), pp.
15110
15123
. 10.1021/jp901034t
You do not currently have access to this content.