Abstract

The plastic deformation during flash-butt welding (FBW) and its effects on weld quality are investigated by using numerical and experimental methods. The electro-thermo-mechanical coupling model of FBW is validated by comparing the calculated temperature and plastic deformation to measured one, obtaining reasonable agreement. The calculation results reveal that a thin liquid metal film forms at the contact interface during accelerating flash stage to provide temperature conditions for upsetting. The length of liquid metal (including burning and expelled losses) is 29.7 mm for one piece pipeline tube under the given condition. The stress and strain at contact surface are both almost zero at the initial stage of upsetting due to the thin liquid metal film existing at the contact interface, and they rapidly increase to 58.0 MPa and 17.7, respectively, while the liquid metal are excluded from the contact interface between two tubes to be welded. The maximum plastic deformation is 18.1 mm at the given condition under the action of upsetting force. The experimental results illustrate that the microstructure of X65 FBW joints consists of massive ferrite, grain boundary pre-eutectic ferrite, pearlite, and widmannstatten, while the microstructure in heat-affected zone is fine ferrite and pearlite. The coarse grain size and gray spots in the butt joint severely decrease the tension strength and impact toughness.

References

References
1.
Rosado
,
D. B.
,
Waele
,
W. D.
,
Vanderschueren
,
D.
, and
Hertelé
,
S.
,
2013
, “
Latest Developments in Mechanical Properties and Metallurgical Features of High Strength Line Pipe Steels
,”
5th International Conference on Sustainable Construction and Design
,
Ghent
,
February
.
2.
Zhang
,
Y.
,
Xiao
,
Z.
, and
Zhang
,
W.
,
2013
, “
On 3-D Crack Problems in Offshore Pipeline With Large Plastic Deformation
,”
Theor. Appl. Fract. Mech.
,
67
, pp.
22
28
. 10.1016/j.tafmec.2014.01.001
3.
Laschet
,
G.
,
Fayek
,
P.
,
Henke
,
T.
,
Quade
,
H.
, and
Prahl
,
U.
,
2013
, “
Derivation of Anisotropic Flow Curves of Ferrite–Pearlite Pipeline Steel via a Two-Level Homogenisation Scheme
,”
Mater. Sci. Eng. A-Struct.
,
566
, pp.
143
156
. 10.1016/j.msea.2012.12.064
4.
Midawi
,
A. R. H.
,
Simha
,
C. H. M.
, and
Gerlich
,
A. P.
,
2018
, “
Assessment of Yield Strength Mismatch in X80 Pipeline Steel Welds Using Instrumented Indentation
,”
Int. J. Pressure Vessels Piping
,
168
, pp.
258
268
. 10.1016/j.ijpvp.2018.09.014
5.
Mirzaee-Sisan
,
A.
, and
Wu
,
G.
,
2019
, “
Residual Stress in Pipeline Girth Welds- A Review of Recent Data and Modelling
,”
Int. J. Pressure Vessels Piping
,
169
, pp.
142
152
. 10.1016/j.ijpvp.2018.12.004
6.
Yapp
,
D.
, and
Blackman
,
S. A.
,
2004
, “
Recent Developments in High Productivity Pipeline Welding
,”
J. Braz. Soc. Mech. Sci. Eng.
,
26
(
1
), pp.
89
97
. 10.1590/S1678-58782004000100015
7.
Ichiyama
,
Y.
, and
Saito
,
T.
,
2004
, “
Factors Affecting Flash Weldability in High Strength Steel—A Study on Toughness Improvement of Flash Welded Joints in High Strength Steel
,”
Weld. Int.
,
18
(
6
), pp.
436
443
. 10.1533/wint.2004.3255
8.
Turner
,
D. L.
,
1986
, “
Flash-Butt Welding of Large-Diameter Oil and Gas Pipelines
,”
ASME J. Energy Resour.
,
108
(
4
), pp.
347
351
. 10.1115/1.3231288
9.
Morks
,
M. F.
,
2008
, “
Overview of Recent Welding Technology Relating to Pipeline Construction
,”
Trans. JWRI
,
37
(
1
), pp.
1
5
.
10.
Kuroda
,
T.
, and
Shimada
,
M.
,
2008
, “
Micro Flash Butt Welding of Super Duplex Stainless Steel With Zr-Based Metallic Glass Insert
,”
Vacuum
,
83
(
1
), pp.
153
156
. 10.1016/j.vacuum.2008.03.089
11.
Xi
,
C.
,
Sun
,
D.
,
Xuan
,
Z.
,
Wang
,
J.
, and
Song
,
G.
,
2016
, “
Microstructures and Mechanical Properties of Flash Butt Welded High Strength Steel Joints
,”
Mater. Des.
,
96
, pp.
506
514
. 10.1016/j.matdes.2016.01.129
12.
Wang
,
W.
,
Shi
,
Y.
,
Lei
,
Y.
, and
Tian
,
Z.
,
2005
, “
FEM Simulation on Microstructure of DC Flash Butt Welding for an Ultra-Fine Grain Steel
,”
J. Mater. Process. Technol.
,
161
(
3
), pp.
497
503
. 10.1016/j.jmatprotec.2004.07.098
13.
Wörterbuch
,
G. T.
,
2014
,
Flash Butt Welding
,
Dictionary Geotechnical Engineering
,
Berlin, Germany
.
14.
Ziemian
,
C. W.
,
Sharma
,
M. M.
, and
Whaley
,
D. E.
,
2012
, “
Effects of Flashing and Upset Sequences on Microstructure, Hardness, and Tensile Properties of Welded Structural Steel Joints
,”
Mater. Des.
,
33
, pp.
175
184
. 10.1016/j.matdes.2011.07.026
15.
Tawfik
,
D.
,
Mutton
,
P. J.
, and
Chiu
,
W. K.
,
2008
, “
Experimental and Numerical Investigations: Alleviating Tensile Residual Stresses in Flash-Butt Welds by Localised Rapid Post-Weld Heat Treatment
,”
J. Mater. Process. Technol.
,
196
(
1
), pp.
279
291
. 10.1016/j.jmatprotec.2007.05.055
16.
Adedayo
,
S. M.
, and
Irehovbude
,
S. O.
,
2013
, “
Numerical Simulation of Transient Temperature in Flash Butt-Welded Axi-Symmetric Circular Sections
,”
J. Nav. Archit. Mar. Eng.
,
10
(
1
), pp.
276
281
. 10.3329/jname.v10i1.8683
17.
Ma
,
N.
,
Cai
,
Z.
,
Huang
,
H. D.
,
Murakawa
,
H.
, and
Pan
,
J.
,
2015
, “
Investigation of Welding Residual Stress in Flash-Butt Joint of U71Mn Rail Steel by Numerical Simulation and Experiment
,”
Mater. Des.
,
88
, pp.
1296
1309
. 10.1016/j.matdes.2015.08.124
18.
Gladman
,
T.
,
1966
, “
On the Theory of the Effect of Precipitate Particles on Grain Growth in Metals
,”
Proc. R. Soc. London, Ser. A.
,
294
, pp.
298
309
.
19.
Tang
,
S. H.
,
Luo
,
Y. S.
,
Zhou
,
Z. B.
, and
Wang
,
Z. C.
,
2008
, “
Plastic Variational Principle Based on the Least Work Consumption Principle
,”
J. Cent. S. Univ. Technol.
,
15
(
S1
), pp.
39
42
. 10.1007/s11771-008-0310-6
20.
Zhou
,
J.
, and
Guan
,
K. Z.
,
1989
,
Plastic Deformation Resistance of Metals (in Chinese)
,
Mechanical Industry Press
,
Beijing, China
.
21.
Nezamdost
,
M. R.
,
Esfahani
,
M.
,
Hashemi
,
S. H.
, and
Mirbozorgi
,
S. A.
,
2016
, “
Investigation of Temperature and Residual Stresses Field of Submerged arc Welding by Finite Element Method and Experiments
,”
Int. J. Adv. Manuf. Technol.
,
87
(
1–4
), pp.
615
624
. 10.1007/s00170-016-8509-4
22.
Fang
,
W.
,
Gao
,
S.
,
Wanghui
,
X. U.
, and
Wang
,
H.
,
2017
, “
Study on Microstructure and Low Temperature Impact Toughness of X65 Line Pipe Flash Butt Welding Joint
,”
Hot Work. Technol.
,
46
, pp.
37
45
.
You do not currently have access to this content.