Abstract

This study attempts to provide a theoretical estimate coupled with an analysis of the measured data to predict pitting damage of an aluminum alloy 2219 under the conjoint influence of mechanical load and corrosive environment. In accordance with the basic principle of crater growth coupled with the synergistic influences of mechanical and chemical effects, the law governing the presence and growth of corrosion pits was studied. Based on the concept of microscopic damage mechanics, porosity as a damage variable was introduced and the resulting model for estimating the reduction in elastic modulus of the material that has experienced observable damage due to pitting was established. Accelerated corrosion tests and uniaxial tensile tests are carried out, and a research-grade microscope coupled with a laser range finder was used to study the formation, presence, and growth of the pits with time. It was found that the corrosion pit in the chosen aluminum alloy can be simulated as a semi-ellipsoid, and the relationship between the depth of the pit and applied stress is an exponential function. This enabled in establishing the influence of alloy chemistry on nature, extent, and severity of damage due to pitting. The macroscopic morphology of the damaged specimens after corrosion was carefully observed and analyzed. The influence of time of exposure to the environment and applied load on damage due to pitting was verified. A comparison between the calculated results and experimental data reveals an overall correctness of the method developed and discussed in this paper.

References

1.
Li
,
L.
,
Chen
,
C.
, and
Yang
,
F.
,
2013
, “
Corrosion Behavior of 0359 Aluminum Alloy in Marine Atmosphere
,”
Hot Work. Technol.
,
42
(
2
), pp.
28
31
.
2.
He
,
J.
,
Wen
,
J.
, and
Sun
,
L.
,
2015
, “
Characterization of Pitting Behavior of Pure Al and Al-7Zn-0.1Sn-0.015Ga Alloy by Cyclic Polarization Technique
,”
Corros. Sci. Prot. Technol.
,
27
(
5
), pp.
449
453
.
3.
Liu
,
Z.
,
Wang
,
J.
, and
Zhang
,
P.
,
2015
, “
Corrosion Behavior of 5083 Al-Alloy in Seawater and Its Cathodic Protection
,”
J. Chin. Soc. Corros. Prot.
,
35
(
3
), pp.
239
244
.
4.
Li
,
L.
,
Kong
,
X.
, and
Li
,
X.
,
2016
, “
Electrochemical Properties of Micro Area of 5083 Aluminum Alloy in 3%NaCl Solution
,”
Equip. Environ. Eng.
,
13
(
5
), pp.
8
14
.
5.
Ishihara
,
S.
,
Nan
,
Z. Y.
,
McEvily
,
A. J.
,
Goshima
,
T.
, and
Sunada
,
S.
,
2008
, “
On the Initiation and Growth Behavior of Corrosion Pits During Corrosion Fatigue Process of Industrial Pure Aluminum
,”
Int. J. Fatigue
,
9
(
9
), pp.
1659
1668
. 10.1016/j.ijfatigue.2007.11.004
6.
Godard
,
H. P.
,
2015
, “
The Corrosion Behavior of Aluminum in Natural Waters
,”
Can. J. Chem. Eng.
,
39
(
5
), pp.
167
173
. 10.1002/cjce.5450380507
7.
Valor
,
A.
,
Caleyo
,
F.
,
Alfonso
,
L.
,
Rivas
,
D.
, and
Hallen
,
J. M.
,
2007
, “
Stochastic Modeling of Pitting Corrosion: A New Model for Initiation and Growth of Multiple Corrosion Pits
,”
Corros. Sci.
,
2
(
2
), pp.
559
579
. 10.1016/j.corsci.2006.05.049
8.
Murer
,
N.
, and
Buchheit
,
R. G.
,
2013
, “
Stochastic Modeling of Pitting Corrosion in Aluminum Alloys
,”
Corros. Sci.
,
69
, pp.
139
148
. 10.1016/j.corsci.2012.11.034
9.
van der Walde
,
K.
, and
Hillberry
,
B. M.
,
2007
, “
Initiation and Shape Development of Corrosion-Nucleated Fatigue Cracking
,”
Int. J. Fatigue
,
29
(
7
), pp.
1269
1281
. 10.1016/j.ijfatigue.2006.10.010
10.
van der Walde
,
K.
, and
Hillberry
,
B. M.
,
2008
, “
Characterization of Pitting Damage and Prediction of Remaining Fatigue Life
,”
Int. J. Fatigue
,
30
(
1
), pp.
106
118
. 10.1016/j.ijfatigue.2007.02.020
11.
van der Walde
,
K.
,
Brockenbrough
,
J. R.
, and
Craig
,
B. A.
,
2005
, “
Multiple Fatigue Crack Growth in Pre-Corroded 2024-T3 Aluminum
,”
Int. J. Fatigue
,
27
(
10–12
), pp.
1509
1518
. 10.1016/j.ijfatigue.2005.06.026
12.
Frantziskonis
,
G. N.
,
Simon
,
L. B.
, and
Woo
,
J.
,
Matikas
,
T. E.
,
2000
, “
Multiscale Characterization of Pitting Corrosion and Application to an Aluminum Alloy
,”
Eur. J. Mech. A. Solids
,
19
(
2
), pp.
309
318
. 10.1016/S0997-7538(00)00162-5
13.
Liu
,
Z.
,
Wang
,
H.
, and
Mu
,
Z.
,
2017
, “
Research of Aircraft Aluminum Alloys Pitting Corrosion Growth Behavior Based on Micro-Structure
,”
Adv. Aeronaut. Sci. Eng.
,
8
(
2
), pp.
143
148,189
.
14.
Gou
,
Y.
,
Yin
,
Z.
, and
Huang
,
Q.
,
2014
, “
A Finite Element Method for Prediction of Pitting-Corrosion Fatigue Life Based on Damage Mechanics
,”
Adv. Aeronaut. Sci. Eng.
,
2
, pp.
233
238
.
15.
Chen
,
B.
,
Liu
,
J.
, and
Wang
,
H.
,
2012
, “
Advance in Fatigue Life Prediction Techniques for Pre-Corroded Aluminium Alloy
,”
Fail. Anal. Prev.
,
7
(
1
), pp.
50
56
.
16.
Wang
,
R.
,
Fand
,
Y.
, and
Lin
,
Z.
,
2016
, “
Multi-Scale Analysis of Residual Strength of Offshore Platforms With Pitting Corrosion
,”
Eng. Mech.
,
33
(
1
), pp.
238
245
.
17.
Wang
,
Y.
,
Huang
,
X.
, and
Cui
,
W.
,
2007
, “
Pitting Corrosion Model of Mild and Low-Alloy Steel in Marine Environment-Part 1: Maximum Pit Depth
,”
J. Ship Mech.
,
11
(
4
), pp.
577
586
.
18.
Kaesche
,
H.
,
2003
,
Corrosion of Metals: Physicochemical Principles and Current Problems
,
Springer-Verlag
,
Berlin
, p.
337
.
19.
ASTM G85-94
,
1994
,
Standard Practice for Modified Salt Spray (Fog) Testing
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
20.
ASTM G46-94
,
2013
,
Standard Guide for Examination and Evaluation of Pitting Corrosion
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
21.
Xie
,
C.
,
2017
, “
Research on Pitting Corrosion of Metals With the Effects of Mechanical Stress and Structural Reliability Analysis Method
,”
Ph.D. thesis
,
Northwestern Polytechnical University
,
Xi’an, China
.
22.
Ernst
,
P.
, and
Newman
,
R. C.
,
2002
, “
Pit Growth Studies in Stainless Steel Foils. I. Introduction and Pit Growth Kinetics
,”
Corros. Sci.
,
44
(
5
), pp.
927
941
. 10.1016/S0010-938X(01)00133-0
23.
Mattson
,
E.
,
1996
,
Basic Corrosion Technology for Scientists and Engineers
,
Institute of Materials
,
London
, p.
161
.
24.
Hoeppner
,
A. M.
,
1996
, “
The Effect of Prior Corrosion Damage on Short Crack Growth Rates of Two Aluminum Alloys
,”
Ph.D. thesis
,
University of Utah
,
Salt Lake City, UT
.
25.
Rao
,
S.
, and
Wang
,
Y.
,
2011
, “
Pitting Corrosion Law of LY12CZ Aluminum Alloy Under Static Load
,”
Corros. Sci. Prot. Technol.
,
23
(
5
), pp.
407
410
.
26.
Harlow
,
D. G.
, and
Wei
,
R. P.
,
1998
, “
A Probability Model for the Growth of Corrosion Pits in Aluminum Alloys Inducted by Constituent Particles
,”
Eng. Fract. Mech.
,
59
(
3
), pp.
305
325
. 10.1016/S0013-7944(97)00127-6
27.
Liu
,
Z. G.
,
Li
,
X. D.
, and
Mu
,
Z. T.
,
2017
, “
Microstructure Influencing Factors of Aero Aluminum Alloy Pitting Corrosion Behavior
,”
Equip. Environ. Eng.
,
14
(
3
), pp.
23
26
.
28.
Chen
,
G. S.
,
Wan
,
K. C.
,
Gao
,
M.
,
Wei
,
R. P.
, and
Flournoy
,
T. H.
,
1996
, “
Transition From Pitting to Fatigue Crack Growth-Modeling of Corrosion of Corrosion Fatigue Crack Nucleation in a 2024-T3 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
219
(
1–2
), pp.
126
132
. 10.1016/S0921-5093(96)10414-7
29.
Ren
,
G.
, and
Zhao
,
C.
,
2002
, “
Electrochemical Behavior Inside the Stress Corrosion Cracking of Aluminum Alloy
,”
J. Shenyang Inst. Technol.
,
2
, pp.
110
113
.
30.
Shi
,
P.
, and
Mahadevan
,
S.
,
2001
, “
Damage Tolerance Approach for Probabilistic Pitting Corrosion Fatigue Life Prediction
,”
Eng. Fract. Mech.
,
68
(
13
), pp.
1493
1507
. 10.1016/S0013-7944(01)00041-8
31.
Ma
,
L.
, and
Hoeppner
,
D. W.
,
1994
, “
The Effects of Pitting on Fatigue Crack Nucleation in 7075-T6 Aluminum Alloy
,”
NASA Technical Report N95-14453-0339
.
32.
Sankaran
,
K. K.
,
Perez
,
R.
, and
Jata
,
K. V.
,
2001
, “
Effects of Pitting Corrosion on the Fatigue Behavior of Aluminum Alloy 7075-T6: Modeling and Experimental Studies
,”
Mater. Sci. Eng. A
,
297
(
1/2
), pp.
223
229
. 10.1016/S0921-5093(00)01216-8
33.
Wu
,
L.
,
2006
, “
Damage Mechanics Study of Environment Corrosion Combining With Stress and Prediction of Structure Property
,”
Ph.D. thesis
,
Northwestern Polytechnical University
,
Xi’an, China
.
34.
Liu
,
X.
,
2002
,
Metal Corrosion
,
National Defense Industry Press
,
Beijing
.
35.
Tan
,
S.
,
2013
, “
Modeling and Computational Analysis on Stress Corrosion Life Prediction of Low-Pressure Rotor in Large Nuclear Power Turbine
,”
Ph.D. thesis
,
Shanghai Jiao Tong University
,
China
.
36.
Gutman
,
E. M.
,
1994
,
Mechanochemistry of Solid Surfaces
,
World Scientific Publishing Company
,
Singapore
.
37.
Budiansky
,
B.
,
1965
, “
On the Elastic Moduli of Some Heterogeneous Material
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
223
227
. 10.1016/0022-5096(65)90011-6
38.
Hwang
,
K.
, and
Huang
,
Y.
,
1999
,
Constitutive Models of Solids
,
Tsinghua University Press
,
Beijing
.
39.
ASTM G34-90
,
1990
,
Test Method for Exfoliation Corrosion Susceptibility in 2xxx and 7xxx Series Aluminum Alloys
,
American Society for Testing and Material
,
West Conshohocken, PA
.
You do not currently have access to this content.