Abstract

Silicone-based biofidelic surrogates are used in many biomedical applications. Apart from mimicking the mechanical behavior of bodily tissues, there is an increasing requirement for these materials to be electrically conductive and piezoresistive to facilitate direct instrumentation. Carbon nanotubes (CNTs) have been extensively investigated as fillers to impart electrical conductivity and piezoresistivity to polymeric materials including silicone. In this paper, we fabricate, test, and characterize a two-part silicone/CNT sheet sandwich composites that exhibit conductivity, piezoresistivity, and biofidelic with mechanical properties corresponding to that of the white matter of human brain tissue. The electromechanical performance of the sandwich composite improves in subsequent loading after the core fracture during initial loading. Analytical models developed for discontinuous core sandwich structures are used to analyze and explain the experimental results. The results indicate the potential for using this discontinuous core biofidelic-piezoresistive sandwich nanocomposite for biomedical applications without deploying external deformation sensors.

References

References
1.
Reymond
,
M. A.
,
Steinert
,
R.
,
Escourrou
,
J.
, and
Fourtanier
,
G.
,
2002
, “
Ethical Legal and Economic Issues Raised by the Use of Human Tissue in Postgenomic Research
,”
Dig. Dis.
,
20
(
3–4
), pp.
257
265
. 10.1159/000067677
2.
Novitzky
,
D.
,
Cooper
,
D. K.
,
Morrell
,
D.
, and
Isaacs
,
S.
,
1988
, “
Change From Aerobic to Anaerobic Metabolism After Brain Death and Reversal Following Triiodothyronine Therapy
,”
Transplantation
,
45
(
1
), pp.
32
36
. 10.1097/00007890-198801000-00008
3.
Pantoni
,
L.
,
Garcia
,
J. H.
, and
Gutierrez
,
J. A.
,
1996
, “
Cerebral White Matter is Highly Vulnerable to Ischemia
,”
Stroke
,
27
(
9
), pp.
1641
1646
. 10.1161/01.STR.27.9.1641
4.
Payne
,
T.
,
Mitchell
,
S.
,
Bibb
,
R.
, and
Waters
,
M.
,
2014
, “
Initial Validation of a Relaxed Human Soft Tissue Simulant for Sports Impact Surrogates
,”
Procedia Eng.
,
72
, pp.
533
538
. 10.1016/j.proeng.2014.06.092
5.
Moy
,
P.
,
Weerasooriya
,
T.
,
Juliano
,
T. F.
,
VanLandingham
,
M. R.
, and
Chen
,
W.
,
2006
, “
Dynamic Response of an Alternative Tissue Simulant Physically Associating Gels (PAG)
,”
Army Research Lab. Aberdeen Proving Ground MD
, Report No. ARL-RP-136.
Aberdeen, MD
.
6.
Abdul-Muneer
,
P. M.
,
Schuetz
,
H.
,
Wang
,
F.
,
Skotak
,
M.
,
Jones
,
J.
,
Gorantla
,
S.
, and
Haorah
,
J.
,
2013
, “
Induction of Oxidative and Nitrosative Damage Leads to Cerebrovascular Inflammation in an Animal Model of Mild Traumatic Brain Injury Induced by Primary Blast
,”
Free Radicals Biol. Med.
,
60
(
7
), pp.
282
291
. 10.1016/j.freeradbiomed.2013.02.029
7.
Ganpule
,
S.
,
Alai
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2013
, “
Mechanics of Blast Loading on the Head Models in the Study of Traumatic Brain Injury Using Experimental and Computational Approaches
,”
Biomech. Model. Mechanobiol.
,
12
(
3
), pp.
511
531
. 10.1007/s10237-012-0421-8
8.
Chanda
,
A.
,
Callaway
,
C.
,
Clifton
,
C.
, and
Unnikrishnan
,
V.
,
2018
, “
Biofidelic Human Brain Tissue Surrogates
,”
Mech. Adv. Mater. Struc.
,
25
(
15–16
), pp.
1335
1341
. 10.1080/15376494.2016.1143749
9.
Misra
,
S.
,
Ramesh
,
K. T.
, and
Okamura
,
A. M.
,
2010
, “
Modelling of Non-Linear Elastic Tissues for Surgical Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
6
), pp.
811
818
. 10.1080/10255840903505121
10.
Roberts
,
J. C.
,
Merkle
,
A. C.
,
Biermann
,
P. J.
,
Ward
,
E. E.
,
Carkhuff
,
B. G.
,
Cain
,
R. P.
, and
O’Connor
,
J. V.
,
2007
, “
Computational and Experimental Models of the Human Torso for Non-Penetrating Ballistic Impact
,”
J. Biomech.
,
40
(
1
), pp.
125
136
. 10.1016/j.jbiomech.2005.11.003
11.
Liu
,
C. X.
, and
Choi
,
J. W.
,
2010
, “
Strain-dependent Resistance of PDMS and Carbon Nanotubes Composite Microstructures
,”
IEEE Trans. Nanotechnol.
,
9
(
5
), pp.
590
595
. 10.1109/TNANO.2010.2060350
12.
Tombler
,
T. W.
,
Zhou
,
C.
,
Alexseyev
,
L.
,
Kong
,
J.
,
Dai
,
H.
,
Liu
,
L.
, and
Wu
,
S. Y.
,
2000
, “
Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local-Probe Manipulation
,”
Nature
,
405
(
6788
), p.
769
. 10.1038/35015519
13.
Hu
,
N.
,
Karube
,
Y.
,
Yan
,
C.
,
Masuda
,
Z.
, and
Fukunaga
,
H.
,
2008
, “
Tunneling Effect in a Polymer/Carbon Nanotube Nanocomposite Strain Sensor
,”
Acta Mater.
,
56
(
13
), pp.
2929
2936
. 10.1016/j.actamat.2008.02.030
14.
Huang
,
Y. T.
,
Huang
,
S. C.
,
Hsu
,
C. C.
,
Chao
,
R. M.
, and
Vu
,
T. K.
,
2012
, “
Design and Fabrication of Single-Walled Carbon Nanonet Flexible Strain Sensors
,”
Sensors
,
12
(
3
), pp.
3269
3280
. 10.3390/s120303269
15.
Pham
,
G. T.
,
Park
,
Y. B.
,
Liang
,
Z.
,
Zhang
,
C.
, and
Wang
,
B.
,
2008
, “
Processing and Modeling of Conductive Thermoplastic/Carbon Nanotube Films for Strain Sensing
,”
Composites, Part B
,
39
(
1
), pp.
209
216
. 10.1016/j.compositesb.2007.02.024
16.
Park
,
J. M.
,
Gu
,
G. Y.
,
Wang
,
Z. J.
,
Kwon
,
D. J.
, and
DeVries
,
K. L.
,
2013
, “
Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator Applications
,”
Appl. Surf. Sci.
,
287
(
12
), pp.
75
83
. 10.1016/j.apsusc.2013.09.069
17.
Zhang
,
W.
,
Suhr
,
J.
, and
Koratkar
,
N.
,
2006
, “
Carbon Nanotube/Polycarbonate Composites as Multifunctional Strain Sensors
,”
J. Nanosci. Nanotechnol.
,
6
(
4
), pp.
960
964
. 10.1166/jnn.2006.171
18.
Chang
,
F. Y.
,
Wang
,
R. H.
,
Yang
,
H.
,
Lin
,
Y. H.
,
Chen
,
T. M.
, and
Huang
,
S. J.
,
2010
, “
Flexible Strain Sensors Fabricated With Carbon Nano-Tube and Carbon Nano-Fiber Composite Thin Films
,”
Thin Solid Films
,
518
(
24
), pp.
7343
7347
. 10.1016/j.tsf.2010.04.108
19.
Hu
,
N.
,
Karube
,
Y.
,
Arai
,
M.
,
Watanabe
,
T.
,
Yan
,
C.
,
Li
,
Y.
, and
Fukunaga
,
H.
,
2010
, “
Investigation on Sensitivity of a Polymer/Carbon Nanotube Composite Strain Sensor
,”
Carbon
,
48
(
3
), pp.
680
687
. 10.1016/j.carbon.2009.10.012
20.
Gbaguidi
,
A.
,
Namilae
,
S.
, and
Kim
,
D.
,
2018
, “
Monte Carlo Model for Piezoresistivity of Hybrid Nanocomposites
,”
ASME J. Eng. Mater. Technol.
,
140
(
1
), p.
011007
. 10.1115/1.4037024
21.
Namilae
,
S.
,
Li
,
J.
, and
Chava
,
S.
,
2018
, “
Improved Piezoresistivity and Damage Detection Application of Hybrid Carbon Nanotube Sheet-Graphite Platelet Nanocomposites
,”
Mech. Adv. Mater. Struc.
,
15
, pp.
1
9
. 10.1080/15376494.2018.1432812
22.
Liu
,
J.
,
Rinzler
,
A. G.
,
Dai
,
H.
,
Hafner
,
J. H.
,
Bradley
,
R. K.
,
Boul
,
P. J.
, and
Rodriguez-Macias
,
F.
,
1998
, “
Fullerene Pipes
,”
Science
,
280
(
5367
), pp.
1253
1256
. 10.1126/science.280.5367.1253
23.
Vigolo
,
B.
,
Penicaud
,
A.
,
Coulon
,
C.
,
Sauder
,
C.
,
Pailler
,
R.
,
Journet
,
C.
, and
Poulin
,
P.
,
2000
, “
Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes
,”
Science
,
290
(
5495
), pp.
1331
1334
. 10.1126/science.290.5495.1331
24.
Pötschke
,
P.
,
Bhattacharyya
,
A. R.
, and
Janke
,
A.
,
2003
, “
Morphology and Electrical Resistivity of Melt Mixed Blends of Polyethylene and Carbon Nanotube Filled Polycarbonate
,”
Polymer
,
44
(
26
), pp.
8061
8069
. 10.1016/j.polymer.2003.10.003
25.
Pötschke
,
P.
,
Fornes
,
T. D.
, and
Paul
,
D. R.
,
2002
, “
Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites
,”
Polymer
,
43
(
11
), pp.
3247
3255
. 10.1016/S0032-3861(02)00151-9
26.
Seo
,
M. K.
, and
Park
,
S. J.
,
2004
, “
Electrical Resistivity and Rheological Behaviors of Carbon Nanotubes-Filled Polypropylene Composites
,”
Chem. Phys. Lett.
,
395
(
1–3
), pp.
44
48
. 10.1016/j.cplett.2004.07.047
27.
Krause
,
B.
,
Pötschke
,
P.
, and
Häußler
,
L.
,
2009
, “
Influence of Small Scale Melt Mixing Conditions on Electrical Resistivity of Carbon Nanotube-Polyamide Composites
,”
Compos. Sci. Technol.
,
69
(
10
), pp.
1505
1515
. 10.1016/j.compscitech.2008.07.007
28.
Tiusanen
,
J.
,
Vlasveld
,
D.
, and
Vuorinen
,
J.
,
2012
, “
Review on the Effects of Injection Moulding Parameters on the Electrical Resistivity of Carbon Nanotube Filled Polymer Parts
,”
Compos. Sci. Technol.
,
72
(
14
), pp.
1741
1752
. 10.1016/j.compscitech.2012.07.009
29.
Lu
,
J.
,
Lu
,
M.
,
Bermak
,
A.
, and
Lee
,
Y. K.
,
2007
, “
Study of Piezoresistance Effect of Carbon Nanotube-PDMS Composite Materials for Nanosensors
,”
Seventh IEEE Conference on Nanotechnology (IEEE NANO)
,
IEEE
,
New York
, pp.
1240
1243
.
30.
Jung
,
H. C.
,
Moon
,
J. H.
,
Baek
,
D. H.
,
Lee
,
J. H.
,
Choi
,
Y. Y.
,
Hong
,
J. S.
, and
Lee
,
S. H.
,
2012
, “
CNT/PDMS Composite Flexible Dry Electrodes for Long-Term ECG Monitoring
,”
IEEE Trans. Biomed. Eng.
,
59
(
5
), pp.
1472
1479
. 10.1109/TBME.2012.2190288
31.
Lee
,
J. H.
,
Lee
,
K. Y.
,
Gupta
,
M. K.
,
Kim
,
T. Y.
,
Lee
,
D. Y.
,
Oh
,
J.
, and
Yoo
,
J. B.
,
2014
, “
Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator
,”
Adv. Mater.
,
26
(
5
), pp.
765
769
. 10.1002/adma.201303570
32.
Zhang
,
J.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Gennarelli
,
T. A.
,
2005
, “
Temporal Cavity and Pressure Distribution in a Brain Simulant Following Ballistic Penetration
,”
J. Neurotrauma
,
22
(
11
), pp.
1335
1347
. 10.1089/neu.2005.22.1335
33.
Kalcioglu
,
Z. I.
,
Mrozek
,
R. A.
,
Mahmoodian
,
R.
,
VanLandingham
,
M. R.
,
Lenhart
,
J. L.
, and
Van Vliet
,
K. J.
,
2013
, “
Tunable Mechanical Behavior of Synthetic Organogels as Biofidelic Tissue Simulants
,”
J. Biomech.
,
46
(
9
), pp.
1583
1591
. 10.1016/j.jbiomech.2013.03.011
34.
Hrysomallis
,
C.
,
2009
, “
Surrogate Thigh Model for Assessing Impact Force Attenuation of Protective Pads
,”
J. Sci. Med. Sport
,
12
(
1
), pp.
35
41
. 10.1016/j.jsams.2007.07.013
35.
Chanda
,
A.
,
Unnikrishnan
,
V.
, and
Flynn
,
Z.
,
2017
, U.S. Patent Application No. 15/204353.
36.
Wang
,
C.
,
Oh
,
S.
,
Lee
,
H. A.
,
Kang
,
J.
,
Jeong
,
K. J.
,
Kang
,
S. W.
, and
Lee
,
J.
,
2017
, “
In Vivo Feasibility Test Using Transparent Carbon Nanotube-Coated Polydimethylsiloxane Sheet at Brain Tissue and Sciatic Nerve
,”
J. Biomed. Mater. Res., Part A
,
105
(
6
), pp.
1736
1745
. 10.1002/jbm.a.36001
37.
Behrens
,
A.
,
Foremny
,
K.
, and
Doll
,
T.
,
2018
, “
Carbon Nanotube-Silicone Rubber on Active Thin-Film Implants
,”
Phys. Status Solidi A
,
215
(
15
), p.
1700873
. 10.1002/pssa.201700873
38.
Devaraj
,
H.
,
Giffney
,
T.
,
Petit
,
A.
,
Assadian
,
M.
, and
Aw
,
K.
,
2018
, “
The Development of Highly Flexible Stretch Sensors for a Robotic Hand
,”
Robotics
,
7
(
3
), p.
54
. 10.3390/robotics7030054
39.
Jin
,
X.
,
Zhu
,
F.
,
Mao
,
H.
,
Shen
,
M.
, and
Yang
,
K. H.
,
2013
, “
A Comprehensive Experimental Study on Material Properties of Human Brain Tissue
,”
J. Biomech.
,
46
(
16
), pp.
2795
2801
. 10.1016/j.jbiomech.2013.09.001
40.
Hashin
,
Z.
,
1985
, “
Analysis of Cracked Laminates: A Variational Approach
,”
Mech. Mater.
,
4
(
2
), pp.
121
136
. 10.1016/0167-6636(85)90011-0
41.
Huang
,
X. G.
,
Gillespie
,
J. W.
Jr.
,
Kumar
,
V.
, and
Gavin
,
L.
,
1996
, “
Mechanics of Integral Armor: Discontinuous Ceramic-Cored Sandwich Structure Under Tension and Shear
,”
Compos. Struct.
,
36
(
1–2
), pp.
81
90
. 10.1016/S0263-8223(96)00068-2
42.
Zhang
,
Z.
,
Gu
,
Y.
,
Wang
,
S.
,
Li
,
Q.
,
Li
,
M.
, and
Zhang
,
Z.
,
2016
, “
Enhanced Dielectric and Mechanical Properties in Chlorine-Doped Continuous CNT Sheet Reinforced Sandwich Polyvinylidene Fluoride Film
,”
Carbon
,
107
(
10
), pp.
405
414
. 10.1016/j.carbon.2016.05.068
43.
Miller
,
K.
, and
Chinzei
,
K.
,
1997
, “
Constitutive Modelling of Brain Tissue: Experiment and Theory
,”
J. Biomech.
,
30
(
11–12
), pp.
1115
1121
. 10.1016/S0021-9290(97)00092-4
44.
Yin
,
G.
,
Hu
,
N.
,
Karube
,
Y.
,
Liu
,
Y.
,
Li
,
Y.
, and
Fukunaga
,
H.
,
2011
, “
A Carbon Nanotube/Polymer Strain Sensor with Linear and Anti-Symmetric Piezoresistivity
,”
J. Compos. Mater.
,
45
(
12
), pp.
1315
1323
. 10.1177/0021998310393296
45.
Kang
,
I.
,
Schulz
,
M. J.
,
Kim
,
J. H.
,
Shanov
,
V.
, and
Shi
,
D.
,
2006
, “
A Carbon Nanotube Strain Sensor for Structural Health Monitoring
,”
Smart Mater. Struct.
,
15
(
3
), pp.
737
. 10.1088/0964-1726/15/3/009
46.
Gawandi
,
A.
,
Carlsson
,
L. A.
,
Bogetti
,
T. A.
, and
Gillespie
,
J. W.
Jr
,
2010
, “
Mechanics of Discontinuous Ceramic Tile Core Sandwich Structure: Influence of Thermal and Interlaminar Stresses
,”
Compos. Struct.
,
92
(
1
), pp.
164
172
. 10.1016/j.compstruct.2009.07.022
47.
Hamed
,
E.
, and
Rabinovitch
,
O.
,
2007
, “
Geometrically Nonlinear Effects in the Flexural Response of Masonry Walls Strengthened with Composite Materials
,”
J. Mech. Mater. Struct.
,
2
(
5
), pp.
829
855
. 10.2140/jomms.2007.2.829
48.
Hashin
,
Z.
,
1986
, “
Analysis of Stiffness Reduction of Cracked Cross-ply Laminates
,”
Eng. Fract. Mech.
,
25
(
5–6
), pp.
771
778
. 10.1016/0013-7944(86)90040-8
49.
Nairn
,
J. A.
,
1992
, “
Microcracking Microcrack-Induced Delamination and Longitudinal Splitting of Advanced Composite Structures
,” Final Report,
Utah University Salt Lake City
,
Department of Materials Science and Engineering
.
50.
Nairn
,
J. A.
,
1989
, “
The Strain Energy Release Rate of Composite Microcracking: A Variational Approach
,”
J. Compos. Mater.
,
23
(
11
), pp.
1106
1129
. 10.1177/002199838902301102
51.
Garrett
,
K. W.
, and
Bailey
,
J. E.
,
1977
, “
Multiple Transverse Fracture in 90 Cross-ply Laminates of a Glass Fibre-Reinforced Polyester
,”
J. Mater. Sci.
,
12
(
1
), pp.
157
168
. 10.1007/BF00738481
52.
Parvizi
,
A.
, and
Bailey
,
J. E.
,
1978
, “
On Multiple Transverse Cracking in Glass Fibre Epoxy Cross-ply Laminates
,”
J. Mater. Sci.
,
13
(
10
), pp.
2131
2136
. 10.1007/BF00541666
53.
Manders
,
P. W.
,
Chou
,
T. W.
,
Jones
,
F. R.
, and
Rock
,
J. W.
,
1983
, “
Statistical Analysis of Multiple Fracture in 0/90/0 Glass Fibre/Epoxy Resin Laminates
,”
J. Mater. Sci.
,
18
(
10
), pp.
2876
2889
. 10.1007/BF00700768
54.
Bogy
,
D. B.
,
1973
, “
The Plane Elastostatic Solution for a Symmetrically Loaded Crack in a Strip Composite
,”
Int. J. Eng. Sci.
,
11
(
9
), pp.
985
996
. 10.1016/0020-7225(73)90012-8
55.
Flaggs
,
D. L.
,
1985
, “
Prediction of Tensile Matrix Failure in Composite Laminates
,”
J. Compos. Mater.
,
19
(
1
), pp.
29
50
. 10.1177/002199838501900103
56.
Chandra
,
N.
,
Li
,
H.
,
Shet
,
C.
, and
Ghonem
,
H.
,
2002
, “
Some Issues in the Application of Cohesive Zone Models for Metal–Ceramic Interfaces
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2827
2855
. 10.1016/S0020-7683(02)00149-X
57.
Bao
,
M.
,
2005
,
Analysis and Design Principles of MEMS Devices
,
Elsevier
,
New York
.
58.
Stampfer
,
C.
,
Jungen
,
A.
,
Linderman
,
R.
,
Obergfell
,
D.
,
Roth
,
S.
, and
Hierold
,
C.
,
2006
, “
Nano- Electromechanical Displacement Sensing Based on Single-Walled Carbon Nanotubes
,”
Nano Lett.
,
6
(
7
), pp.
1449
1453
. 10.1021/nl0606527
59.
Zhang
,
S.
,
Zhang
,
H.
,
Yao
,
G.
,
Liao
,
F.
,
Gao
,
M.
,
Huang
,
Z.
, and
Lin
,
Y.
,
2015
, “
Highly Stretchable Sensitive and Flexible Strain Sensors Based on Silver Nanoparticles/Carbon Nanotubes Composites
,”
J. Alloys Compd.
,
652
(
12
), pp.
48
54
. 10.1016/j.jallcom.2015.08.187
60.
Lee
,
C.
,
Jug
,
L.
, and
Meng
,
E.
,
2013
, “
High Strain Biocompatible Polydimethylsiloxane-Based Conductive Graphene and Multiwalled Carbon Nanotube Nanocomposite Strain Sensors
,”
Appl. Phys. Lett.
,
102
(
18
), p.
183511
. 10.1063/1.4804580
61.
Bain
,
A. C.
, and
Meaney
,
D. F.
,
2000
, “
Tissue-level Thresholds for Axonal Damage in an Experimental Model of Central Nervous System White Matter Injury
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
615
622
. 10.1115/1.1324667
You do not currently have access to this content.