Abstract

This study aimed to investigate the micro deep drawability of the Zn–22Al alloy at room temperature in which it shows superplastic properties. To this goal, first the two-step equal channel angular extrusion (ECAE) process was carried out to obtain an ultra-fine-grained structure (UFG). Upon achieving the grain size of 200 nm, the formability of the alloy at room temperature and at a high strain rate was investigated both experimentally and numerically. Micro deep drawing experiments were performed at different deep drawing ratios (1.66, 1.84, 2.0, and 2.25) and for different sheet thicknesses (0.2, 0.4, and 0.6 mm). The finite element model of the micro deep drawing was also established to assess and compare the thickness variation in deep drawn parts. Results showed that the superplastic Zn–22Al alloy has a great potential in microforming applications. It was also noted that the limiting drawing ratio can be obtained as high as 2.25 in the room temperature condition.

References

References
1.
Youssef
,
K. M.
,
Scattergood
,
R. O.
,
Murty
,
K. L.
,
Horton
,
J. A.
, and
Koch
,
C. C.
,
2005
, “
Ultrahigh Strength and High Ductility of Bulk Nanocrystalline Copper
,”
Appl. Phys. Lett.
,
87
(
9
), pp.
2003
2006
. 10.1063/1.2034122
2.
Voyiadjis
,
G. Z.
,
Karon
,
M.
,
Rusinek
,
A.
,
Adamiak
,
M.
,
Camalet
,
T.
,
Bernier
,
R.
, and
Massion
,
R.
,
2018
, “
Effect of Severe Plastic Deformation by 120 Deg ECAP or Shock Impact on 6061 Aluminum Alloy at High Strain Rates
,”
ASME J. Eng. Mater. Technol.
,
140
(
4
), p.
041001
. 10.1115/1.4039690
3.
Valiev
,
R. Z.
, and
Langdon
,
T. G.
,
2006
, “
Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement
,”
Prog. Mater. Sci.
,
51
(
7
), pp.
881
981
. 10.1016/j.pmatsci.2006.02.003
4.
Estrin
,
Y.
,
Rhee
,
K.
,
Lapovok
,
R.
, and
Thomson
,
P. F.
,
2007
, “
Mechanical Behavior of Alloy AA6111 Processed by Severe Plastic Deformation: Modeling and Experiment
,”
ASME J. Eng. Mater. Technol.
,
129
(
3
), p.
380
. 10.1115/1.2744396
5.
Geiger
,
M.
,
Kleiner
,
M.
,
Eckstein
,
R.
,
Tiesler
,
N.
, and
Engel
,
U.
,
2001
, “
Microforming
,”
CIRP Ann.
,
50
(
2
), pp.
445
462
. 10.1016/S0007-8506(07)62991-6
6.
Xu
,
J.
,
Guo
,
B.
,
Shan
,
D.
, and
Li
,
B.
,
2012
, “
Study of Size Effects on Deformation Behavior and Formability in Micro Metal Forming of Ti Foil
,”
ASME 2012 International Manufacturing Science and Engineering Conference
,
Notre Dame, IN
,
June 4–8
, pp.
263
268
.
7.
Molotnikov
,
A.
,
Lapovok
,
R.
,
Gu
,
C. F.
,
Davies
,
C. H. J.
, and
Estrin
,
Y.
,
2012
, “
Size Effects in Micro Cup Drawing
,”
Mater. Sci. Eng. A
,
550
, pp.
312
319
. 10.1016/j.msea.2012.04.079
8.
Saotome
,
Y.
,
Yasuda
,
K.
, and
Kaga
,
H.
,
2001
, “
Microdeep Drawability of Very Thin Sheet Steels
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
641
647
. 10.1016/S0924-0136(01)00626-4
9.
Parsa
,
M. H.
,
Ettehad
,
M.
,
Matin
,
P. H.
, and
Nasheralahkami
,
S.
,
2010
, “
Experimental and Numerical Determination of Limiting Drawing Ratio of Polypropylene-Al3105 Sandwich Sheets
,”
ASME J. Eng. Mater. Technol.
,
132
(
3
), p.
031004
. 10.1115/1.4001264
10.
Leu
,
D.
, and
Wu
,
J.
,
2004
, “
A Simplified Approach to Estimate Limiting Drawing Ratio and Maximum Drawing Load in Cup
,”
ASME J. Eng. Mater. Technol.
,
126
(
1
), pp.
116
122
. 10.1115/1.1633574
11.
Mahabunphachai
,
S.
, and
Koç
,
M.
,
2008
, “
Investigation of Size Effects on Material Behavior of Thin Sheet Metals Using Hydraulic Bulge Testing at Micro/Meso-Scales
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
1014
1029
. 10.1016/j.ijmachtools.2008.01.006
12.
Yang
,
C.
,
Yin
,
X. H.
, and
Cheng
,
G. M.
,
2013
, “
Microinjection Molding of Microsystem Components: New Aspects in Improving Performance
,”
J. Micromech. Microeng.
,
23
(
9
), p.
093001
. 10.1088/0960-1317/23/9/093001
13.
Engel
,
U.
, and
Eckstein
,
R.
,
2002
, “
Microforming—From Basic Research to Its Realization
,”
J. Mater. Process. Technol.
,
125–126
, pp.
35
44
. 10.1016/S0924-0136(02)00415-6
14.
Moktadir
,
Z.
,
Gao
,
N.
,
Zhang
,
J.
,
Bah
,
M. T.
,
Starink
,
M. J.
,
Qiao
,
X. G.
, and
Kraft
,
M.
,
2010
, “
Microembossing of Ultrafine Grained Al: Microstructural Analysis and Finite Element Modelling
,”
J. Micromech. Microeng.
,
20
(
10
), p.
105002
. 10.1088/0960-1317/20/10/105002
15.
Rosochowski
,
A.
,
Presz
,
W.
,
Olejnik
,
L.
, and
Richert
,
M.
,
2007
, “
Micro-Extrusion of Ultra-Fine Grained Aluminium
,”
Int. J. Adv. Manuf. Technol.
,
33
(
1–2
), pp.
137
146
. 10.1007/s00170-007-0955-6
16.
Langdon
,
T. G.
,
2009
, “
Seventy-Five Years of Superplasticity: Historic Developments and New Opportunities
,”
J. Mater. Sci.
,
44
(
22
), pp.
5998
6010
. 10.1007/s10853-009-3780-5
17.
Kawasaki
,
M.
, and
Langdon
,
T. G.
,
2007
, “
Principles of Superplasticity in Ultrafine-Grained Materials
,”
J. Mater. Sci.
,
42
(
5
), pp.
1782
1796
. 10.1007/s10853-006-0954-2
18.
Kawasaki
,
M.
,
Ahn
,
B.
,
Kumar
,
P.
,
Jang
,
J. I.
, and
Langdon
,
T. G.
,
2017
, “
Nano- and Micro-Mechanical Properties of Ultrafine-Grained Materials Processed by Severe Plastic Deformation Techniques
,”
Adv. Eng. Mater.
,
19
(
1
), pp.
1
17
. 10.1002/adem.201600578
19.
Kaibyshev
,
O. A.
,
1992
,
Superplasticity of Alloys, Intermetallides and Ceramics
,
1st ed.
,
Springer-Verlag
,
Berlin
.
20.
Kawasaki
,
M.
,
Balasubramanian
,
N.
, and
Langdon
,
T. G.
,
2011
, “
Flow Mechanisms in Ultrafine-Grained Metals with an Emphasis on Superplasticity
,”
Mater. Sci. Eng. A
,
528
(
21
), pp.
6624
6629
. 10.1016/j.msea.2011.05.005
21.
Giuliano
,
G.
,
2011
,
Superplastic Forming of Advanced Metallic Materials
,
Woodhead Publishing Series in Metals and Surface Engineering
,
Sawston, Cambridge, UK
.
22.
Tanaka
,
T.
,
Watanabe
,
H.
, and
Higashi
,
K.
,
2003
, “
Microstructure in Zn-Al Alloys After Equal-Channel-Angular Extrusion
,”
Mater. Trans.
,
44
(
9
), pp.
1891
1894
. 10.2320/matertrans.44.1891
23.
Horita
,
Z.
,
Furukawa
,
M.
,
Nemoto
,
M.
,
Barnes
,
A.
, and
Langdon
,
T.
,
2000
, “
Superplastic Forming at High Strain Rates After Severe Plastic Deformation
,”
Acta Mater.
,
48
(
14
), pp.
3633
3640
. 10.1016/S1359-6454(00)00182-8
24.
Hawkins
,
R.
, and
Belk
,
J. A.
,
1976
, “
Deep Drawing of Superplastic Material
,”
Met. Technol.
,
3
(
1
), pp.
516
521
. 10.1179/030716976803391755
25.
Kaibyshev
,
O. A.
,
Kazachkov
,
I. V.
, and
Salikhov
,
S. Y.
,
1984
, “
The Influence of Texture on Superplasticity of the Zn-22% Al Alloy
,”
Acta Metall.
,
26
(
12
), pp.
1887
1894
. 10.1016/0001-6160(78)90101-3
26.
Dutta
,
A.
,
Charit
,
I.
,
Johannes
,
L. B.
, and
Mishra
,
R. S.
,
2005
, “
Deep Cup Forming by Superplastic Punch Stretching of Friction Stir Processed 7075 Al Alloy
,”
Mater. Sci. Eng. A
,
395
(
1–2
), pp.
173
179
. 10.1016/j.msea.2004.12.016
27.
Tsao
,
L. C.
,
Wang
,
S. S.
,
Yang
,
C. F.
, and
Chuang
,
T. H.
,
2001
, “
The Ultra-High Rate Superplastic Forming of a Zn-22Al Thin Sheet Material
,”
Z. Metallkd.
,
92
(
11
), pp.
1227
1230
.
28.
Tsao
,
L. C.
,
Yeh
,
M. S.
,
Lo
,
C. J.
,
Wu
,
F. C.
, and
Chuang
,
T. H.
,
2000
, “
Evaluation of Low Temperature Superplastic Formability for Zn-22Al Thin Sheets
,”
Z. Metallkd.
,
91
(
7
), pp.
613
617
.
29.
Yeh
,
M. S.
,
Lin
,
H. Y.
,
Lin
,
H. T.
, and
Chang
,
C. B.
,
2006
, “
Superplastic Micro-Forming With a Fine Grained Zn-22Al Eutectoid Alloy Using Hot Embossing Technology
,”
J. Mater. Process. Technol.
,
180
(
1–3
), pp.
17
22
. 10.1016/j.jmatprotec.2006.04.013
30.
Hirata
,
T.
,
Tanaka
,
T.
,
Chung
,
S. W.
,
Takigawa
,
Y.
, and
Higashi
,
K.
,
2007
, “
Relationship Between Deformation Behavior and Microstructural Evolution of Friction Stir Processed Zn-22 Wt% Al Alloy
,”
Scr. Mater.
,
56
(
6
), pp.
477
480
. 10.1016/j.scriptamat.2006.11.022
31.
Cetin
,
M. E.
,
Demirtas
,
M.
,
Sofuoglu
,
H.
,
Cora
,
Ö. N.
, and
Purcek
,
G.
,
2016
, “
Effects of Grain Size on Room Temperature Deformation Behavior of Zn-22Al Alloy Under Uniaxial and Biaxial Loading Conditions
,”
Mater. Sci. Eng. A
,
672
, pp.
78
87
. 10.1016/j.msea.2016.06.072
32.
Zhang
,
N. X.
,
Kawasaki
,
M.
,
Huang
,
Y.
, and
Langdon
,
T. G.
,
2014
, “
The Significance of Self-Annealing in Two-Phase Alloys Processed by High-Pressure Torsion
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
63
(
1
), pp.
1
9
. 10.1088/1757-899X/63/1/012126
33.
Samekto
,
H.
, and
Roll
,
K.
, “
Finite Element Analysis of Superplastic Forming Process Using Ls-Dyna
,”
4th European LS-DYNA Users Conference
,
Ulm, Germany
,
May 22–23
, pp.
1
16
.
34.
Guo
,
Z. X.
,
Higashi
,
K.
, and
Ridley
,
N.
,
1990
, “
An Experimental Investigation of the Superplastic Forming Behavior of a Commercial Al-Bronze
,”
Metall. Trans. A
,
21
(
11
), pp.
2957
2966
. 10.1007/BF02647216
35.
Johnson
,
W.
, and
Mellor
,
P. B.
,
1962
,
Plasticity for Mechanical Engineers
,
D. Van Nostrand Company Ltd.
,
London
.
36.
Irthiea
,
I.
,
Green
,
G.
,
Hashim
,
S.
, and
Kriama
,
A.
,
2014
, “
Experimental and Numerical Investigation on Micro Deep Drawing Process of Stainless Steel 304 Foil Using Flexible Tools
,”
Int. J. Mach. Tools Manuf.
,
76
, pp.
21
33
. 10.1016/j.ijmachtools.2013.09.006
37.
Demirtas
,
M.
,
Purcek
,
G.
,
Yanar
,
H.
,
Zhang
,
Z. J.
, and
Zhang
,
Z. F.
,
2015
, “
Improvement of High Strain Rate and Room Temperature Superplasticity in Zn–22Al Alloy by Two-Step Equal-Channel Angular Pressing
,”
Mater. Sci. Eng. A
,
620
, pp.
233
240
. 10.1016/j.msea.2014.09.114
You do not currently have access to this content.