Abstract

The paper describes a new configuration using a gaseous detonation explosive blast source suitable for the studies of the instantaneous uniform pressure loading and mechanical response of materials. The capabilities of the configuration are illustrated by a preliminary series of experiments of the dynamic loading of clamped circular plates of 304 grade stainless steel with thicknesses ranging from 9.5 mm to 0.5 mm. The mechanical responses of the plates were monitored using strain gauges placed across the plate radius together with physical measurements of any permanent residual displacement of the center of the plate. The residual central deformations were analyzed using a well-established correlation involving nondimensional pressure load impulse. No universal correlation for the present data was found, but linear relationships for changes in two experimental parameters were identified, suggesting that the existing correlations have some deficiencies when applied to stainless steel 304.

References

1.
Nurick
,
G.
, and
Martin
,
J.
,
1989
, “
Deformation of Thin Plates Subjected to Impulsive Loading—A Review. Part I: Theoretical Consideration
,”
Int. J. Impact Eng.
,
8
(
2
), pp.
159
170
. 10.1016/0734-743X(89)90014-6
2.
Nurick
,
G.
, and
Martin
,
J.
,
1989
, “
Deformation of Thin Plates Subjected to Impulsive Loading—A Review. Part II: Experimental Studies
,”
Int. J. Impact Eng.
,
8
(
2
), pp.
171
186
. 10.1016/0734-743X(89)90015-8
3.
Munday
,
G.
, and
Newitt
,
D. M.
,
1963
, “
The Deformation of Transversely Loaded Disks Under Dynamic Loads
,”
Philos. Trans. R. Soc. Lond.
,
256
(
1065
), pp.
1
30
. 10.1098/rsta.1963.0015
4.
Yuen
,
S. C. K.
,
Nurick
,
G. N.
,
Langdon
,
S.
, and
Iyer
,
Y.
,
2016
, “
Deformation of Thin Plates Subjected to Impulsive Load: Part III: An Update 25 Years On
,”
Int. J. Impact Eng.
,
107
, pp.
108
117
. 10.1016/j.ijimpeng.2016.06.010
5.
Curry
,
R. J.
, and
Langdon
,
G. S.
,
2017
, “
Transient Response of Steel Plates Subjected to Close Proximity Explosive Detonations in Air
,”
Int. J. Impact Eng.
,
102
, pp.
102
116
. 10.1016/j.ijimpeng.2016.12.004
6.
Ross
,
C. A.
, and
Strickland
,
W. S.
,
1975
,
Shock and Vibration Bulletin, US Naval Research Labs Proc.
, Vol.
54
, No.
4
, pp.
105
116
.
7.
Mirzababaie Mostofi
,
T.
,
Babaei
,
H.
, and
Alitavoli
,
M.
,
2017
, “
Experimental and Theoretical Study on Large Ductile Transverse Deformations of Rectangular Plates Subjected to Shock Load Due to Gas Mixture Detonation
,”
Strain
,
53
(
4
), p.
e12235
. 10.1111/str.v53.4
8.
Woznica
,
K.
,
Pennetier
,
O.
, and
Renard
,
J.
,
2001
, “
Experiments and Numerical Simulations of Thin Metalic Plates Subjected to an Explosion
,”
ASME J. Eng. Mater. Technol.
,
123
(
2
), pp.
203
209
. 10.1115/1.1345528
9.
Schleyer
,
G. K.
, and
Langdon
,
G. S.
,
2003
, “
Pulse Pressure Testing of 1/4 Scale Blast Wall Panels With Connections
,” UKHSE Research Report 124.
10.
Nettleton
,
M. A.
,
1987
,
Gaseous Detonation: Their Nature Effects and Control
,
Chapman Hall
,
London
.
11.
Edwards
,
D. H.
,
1969
, “
A Survey of Recent Work on the Structure of Detonation Waves
,”
Proc. Combust. Inst.
,
12
(
1
), pp.
819
828
. 10.1016/S0082-0784(69)80463-7
12.
Taylor
,
G.
,
1950
, “
The Dynamics of the Combustion Products Behind Plane and Spherical Detonation Fronts in Explosives
,”
Proc. R. Soc. Lond. A
,
200
(
1061
), pp.
235
247
. 10.1098/rspa.1950.0014
13.
Glimm
,
J.
,
1965
, “
Solutions in the Large for Nonlinear Hyperbolic Systems of Equations
,”
Commun. Pure Appl. Math.
,
18
(
4
), p.
697
. 10.1002/(ISSN)1097-0312
14.
Saito
,
T.
, and
Glass
,
I. I.
,
1979
, “
Applications of Random-Choice Method to Problems in Shock and Detonation-Wave Dynamics
,”
University of Toronto, Institute of Aerospace Studies
, UTIAS Report No. 240.
15.
Gottlieb
,
J. J.
,
1988
, “
Staggered and Nonstaggered Grids With Variable Node Spacing and Local Time Stepping for the Random Choice Method
,”
J. Comput. Phys.
,
78
(
1
), pp.
160
177
. 10.1016/0021-9991(88)90042-3
16.
Gottlieb
,
J. J.
, and
Groth
,
C. P. T.
,
1988
, “
Staggered and Nonstaggered Grids with Variable Node Spacing and Local Time Stepping for the Random Choice Method
,”
J. Comput. Phys.
,
78
(
1
), pp.
160
177
. 10.1016/0021-9991(88)90042-3
17.
Gordon
,
S.
, and
Mcbride
,
B. J.
,
1976
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations
,” NASA report Nasa-SP-273.
18.
Thomas
,
G. O.
,
Monks
,
G. W.
,
Oakley
,
G. L.
, and
Williams
,
R. J.
,
1994
, “
Experimental Measurements and Finite Element Modelling of the Dynamic Response of Circular Stainless Steel Plates to Gas Detonation Loading
,”
University of Wales
,
Aberysywtyth
, Unpublished Internal Research Report UWA/CES/rrSS280396.
19.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague
,
Apr. 19–21
, pp.
541
547
.
20.
Teeling-Smith
,
R. G.
, and
Nurick
,
G. N.
,
1991
, “
The Deformation and Tearing of Thin Circular Plates Subjected to Impulsive Loads
,”
Int. J. Impact Eng.
,
11
(
1
), pp.
77
91
. 10.1016/0734-743X(91)90032-B
21.
Zajkani
,
A.
,
Nikooyiha
,
M.
,
Darvizeh
,
A.
, and
Darvizeh
,
M.
,
2013
, “
Effective Rigid Perfectly Plastic Models to Predict Deflection and Residual Velocity of Post Local Failure Motion of Impulsively Loaded Circular Plates
,”
Int. J. Phys. Sci.
,
8
(
12
), pp.
459
480
. 10.5897/IJPS12.596
22.
Babaei
,
H.
, and
Darvizeh
,
A.
,
2012
, “
Analytical Study of Plastic Deformation of Clamped Circular Plates Subjected to Impulsive Loading
,”
J. Mech. Mater. Struct.
,
7
(
4
), pp.
309
322
. 10.2140/jomms
You do not currently have access to this content.