In this work, we develop one- and two-dimensional phase-field simulations to approximate dendritic growth of a binary Al–2 wt% Si alloy. Simulations are performed for both isothermal as well as directional solidification. Anisotropic interface energies are included with fourfold symmetries, and the dilute alloy assumption is imposed. The isothermal results confirm the decrease in the maximum concentration for larger interface velocities as well as reveal the presence of parabolic, dendrite tips evolving along directions of maximum interface energy. The directional solidification results further confirm the formation of distinctive secondary dendritic arm structures that evolve at regular intervals along the unstable solid/liquid interface.

References

1.
Maxwell
,
I.
, and
Hellawell
,
A.
,
1975
, “
A Simple Model for Grain Refinement During Solidification
,”
Acta Metall.
,
23
(
2
), pp.
229
237
.
2.
Wolfram
,
S.
,
1984
, “
Cellular Automata as Models of Complexity
,”
Nature
,
311
(
4
), pp.
601
644
.
3.
Saito
,
Y.
,
Goldbeck-Wood
,
G.
, and
Muller-Krumbhaar
,
H.
,
1988
, “
Numerical Simulation of Dendritic Growth
,”
Phys. Rev. A
,
38
(
4
), pp.
2148
2157
.
4.
Spittle
,
J. A.
, and
Brown
,
S. G. R.
,
1989
, “
Computer Simulation of the Effects of Alloy Variables on the Grain Structures of Castings
,”
Acta Metall.
,
37
(
7
), pp.
1803
1810
.
5.
Kobayashi
,
R.
,
1993
, “
Modeling and Numerical Simulations of Dendritic Crystal Growth
,”
Phys. D
,
63
(
3–4
), pp.
410
423
.
6.
Wheeler
,
A. A.
,
Boettinger
,
W. J.
, and
McFadden
,
G. B.
,
1992
, “
Phase-Field Model for Isothermal Phase Transitions in Binary Alloy
,”
Phys. Rev. E
,
45
(
10
), pp.
7424
7439
.
7.
Wheeler
,
A. A.
,
Boettinger
,
A. A.
, and
McFadden
,
G. B.
,
1993
, “
Phase Field Model of Trapping During Solidification
,”
Phys. Rev. E
,
47
(
4
), pp.
1893
1909
.
8.
Kim
,
S. G.
,
Kim
,
W. T.
, and
Suzuki
,
T.
,
1998
, “
Interfacial Compositions of Solid and Liquid in a Phase-Field Model With Finite Interface Thickness for Isothermal Solidification in Binary Alloys
,”
Phys. Rev. E
,
58
(
3
), pp.
3316
3323
.
9.
Kim
,
S. G.
,
Kim
,
W. T.
, and
Suzuki
,
T.
,
1999
, “
Phase-Field Model for Binary Alloys
,”
Phys. Rev. E
,
60
(
6
), pp.
7186
7197
.
10.
Conti
,
M.
,
1997
, “
Solidification of Binary Alloys: Thermal Effects Studied With the Phase-Field Model
,”
Phys. Rev. E
,
55
(
1
), pp.
765
771
.
11.
Loginova
,
I.
,
Amberg
,
G.
, and
Agern
,
J.
,
2001
, “
Phase-Field Simulation of Non-Isothermal Binary Alloy Solidification
,”
Acta Mater.
,
49
(
4
), pp.
573
581
.
12.
Ghosh
,
S.
,
Ma
,
L.
,
Ofori-Opoku
,
N.
, and
Guyer
,
J. E.
,
2017
, “
On the Primary Spacing and Microsegregation of Cellular Dendrites in Laser Deposited Ni-Nb Alloys
,”
Modell. Simul. Mater. Sci. Eng.
,
25
(
6
), pp.
1
25
.
13.
Ode
,
M.
,
Kim
,
S. G.
,
Kim
,
W. T.
, and
Suzuki
,
T.
,
2001
, “
Numerical Prediction of the Secondary Dendrite Arm Spacing Using a Phase-Field Model
,”
ISIJ Int.
,
41
(
4
), pp.
345
349
.
14.
Caginalp
,
G.
, and
Xie
,
W.
,
1993
, “
Phase-Field and Sharp Interface Alloy Models
,”
Phys. Rev. E
,
48
(
3
), pp.
1897
1909
.
15.
Hohenberg
,
P. C.
, and
Krekhov
,
A. P.
,
2015
, “
An Introduction to the Ginzburg-Landau Theory of Phase Transitions and Nonequilibrium Patterns
,”
Phys. Rep.
,
572
(
4
), pp.
1
42
.
16.
Ferreira
,
A. F.
,
Ferreira
,
I. L.
,
Pereira da Cunha
,
J.
, and
Salvino
,
I. M.
,
2015
, “
Simulation of the Microstructural Evolution of Pure Material and Alloys in an Undercooled Melts via Phase-Field Method and Adaptive Computational Domain
,”
Mater. Res.
,
18
(
3
), pp.
644
653
.
17.
Hu
,
S.
,
Baskes
,
M.
,
Stan
,
M.
, and
Mitchell
,
J.
,
2007
, “
Phase-Field Modeling of Coring Structure Evolution in PuGa Alloys
,”
Acta Mater.
,
55
(
11
), pp.
3641
3648
.
18.
Euler
,
H.
,
Institutiones calculi integralis. Volumen Primum, Opera Omnia
, Vol. XI B G Teubneri Lipsiae et Berolini MCMXIII, 1768.
19.
Mullis
,
A. M.
,
2006
, “
Quantification of Mesh Induced Anisotropy Effects in the Phase-Field Method
,”
Comput. Mater. Sci.
,
36
(
3
), pp.
345
353
.
20.
Murray
,
J. L.
, and
McAllister
,
A. J.
,
1984
, “
The Al-Si (Aluminum-Silicon) System
,”
Bull. Alloy Phase Diagrams
,
5
(
1
), pp.
74
84
.
21.
Ohno
,
M.
, and
Matsuura
,
K.
,
2009
, “
Quantitative Phase-Field Modeling for Dilute Alloy Solididication Involving Diffusion in the Solid
,”
Phys. Rev. E
,
79
(
3
), pp.
31603
.
22.
Sakane
,
S.
,
Takaki
,
T.
,
Ohno
,
M.
,
Shimokawabe
,
T.
, and
Aoki
,
T.
,
2015
, “
GPU-Accelerated 3D Phase-Field Simulations of Dendrite Competitive Growth During Directional Solidification of Binary Alloy
,”
IOP Conv. Ser. Mater. Sci. Eng
,
84
(
1
), pp.
1
7
.
23.
Echebarria
,
B.
,
Folch
,
R.
,
Karma
,
A.
, and
Plapp
,
M.
,
2004
, “
Quantitative Phase-Field Model of Alloy Solidification
,”
Phys. Rev. E
,
70
(
6
), p.
61604
.
24.
Takaki
,
T.
,
Sakane
,
S.
,
Ohno
,
M.
,
Shibuta
,
Y.
,
Shimokawabe
,
T.
, and
Aoki
,
T.
,
2016
, “
Primary Arm Array During Directional Solidification of a Single-Crystal Binary Alloy: Large-Scale Phase-Field Study
,”
Acta Mater.
,
118
(
1
), pp.
230
243
.
25.
Danilov
,
D.
, and
Nestler
,
B.
,
2006
, “
Phase-Field Modelling of Solute Trapping During Rapid Solidification of a Si-As Alloy
,”
Acta Mater.
,
54
(
18
), pp.
4659
4664
.
26.
Pieters
,
R.
, and
Langer
,
J. S.
,
1986
, “
Noise-Driven Sidebranching in the Boundary-Layer Model of Dendritic Solidification
,”
Phys. Rev. Lett.
,
56
(
18
), pp.
1948
1951
.
27.
Brener
,
E.
, and
Temkin
,
D.
,
1995
, “
Noise-Induced Sidebranching in the Three-Dimensional Nonaxisymmetric Dendritic Growth
,”
Phys. Rev. E
,
51
(
1
), pp.
351
359
.
28.
Mullins
,
W. W.
, and
Sekerka
,
R. F.
,
1964
, “
Stability of a Planar Interface During Solidification of a Dilute Binary Alloy
,”
J. Appl. Phys.
,
35
(
2
), pp.
444
451
.
29.
Badillo
,
A.
, and
Beckermann
,
C.
,
2006
, “
Phase-Field Simulation of the Columnar-to-Equiaxed Transition in Alloy Solidification
,”
Acta Mater.
,
54
(
8
), pp.
2015
2026
.
30.
Kattamis
,
T. Z.
, and
Flemmings
,
M. C.
,
1965
, “
Dendrite Morphology, Microsegregation and Homogenization of 4340 Low Alloy Steel
,”
Trans. TMS-AIME
,
233
(
1
), pp.
992
999
.
31.
Zhu
,
J. Z.
,
Wang
,
T.
,
Zhou
,
S. H.
,
Liu
,
Z. K.
, and
Chen
,
L. Q.
,
2004
, “
Quantitative Interface Models for Simulating Microstructure Evolution
,”
Acta Mater.
,
52
(
4
), pp.
833
840
.
You do not currently have access to this content.