Microbeam bending and nano-indentation experiments illustrate that length scale-dependent elastic deformation can be significant in polymers at micron and submicron length scales. Such length scale effects in polymers should also affect the mechanical behavior of reinforced polymer composites, as particle sizes or diameters of fibers are typically in the micron range. Corresponding experiments on particle-reinforced polymer composites have shown increased stiffening with decreasing particle size at the same volume fraction. To examine a possible linkage between the size effects in neat polymers and polymer composites, a numerical study is pursued here. Based on a couple stress elasticity theory, a finite element approach for plane strain problems is applied to predict the mechanical behavior of fiber-reinforced epoxy composite materials at micrometer length scale. Numerical results show significant changes in the stress fields and illustrate that with a constant fiber volume fraction, the effective elastic modulus increases with decreasing fiber diameter. These results exhibit similar tendencies as in mechanical experiments of particle-reinforced polymer composites.

References

References
1.
Fu
,
S. Y.
,
Feang
,
X. Q.
,
Lauke
,
B.
, and
Mai
,
Y. W.
,
2008
, “
Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–Polymer Composites
,”
Compos. Part B
,
39
(
6
), pp.
933
961
.
2.
Nakamura
,
Y.
,
Yamaguchi
,
M.
,
Okubo
,
M.
, and
Matsumoto
,
T.
,
1992
, “
Effects of Particle Size on Mechanical and Impact Properties of Epoxy Resin Filled With Spherical Silica
,”
J. Appl. Polym. Sci.
,
45
, pp.
1281
1289
.
3.
Adachi
,
T.
,
Osaki
,
M.
,
Araki
,
W.
, and
Kwon
,
S. C.
,
2008
, “
Fracture Toughness of Nano- and Micro-Spherical Silica-Particle-Filled Epoxy Composites
,”
Acta Mater.
,
56
(
9
), pp.
2101
2109
.
4.
Jancar
,
J.
,
Hoy
,
R. S.
,
Jancarova
,
E.
, and
Zidek
,
J.
,
2015
, “
Effect of Temperature, Strain Rate and Particle Size on the Yield Stresses and Post-Yield Strain Softening of PMMA and Its Composites
,”
Polymer
,
63
, pp.
196
207
.
5.
Spanoudakis
,
J.
, and
Young
,
R. J.
,
1984
, “
Crack Propagation in a Glass Particle Filled Epoxy-Resin. 1. Effect of Particle-Volume Fraction and Size
,”
J. Mater. Sci.
,
19
(
2
), pp.
473
486
.
6.
Tjernlund
,
J. A.
,
Gamstedt
,
E. K.
, and
Gudmundson
,
P.
,
2006
, “
Length-Scale Effects on Damage Development in Tensile Loading of Glass-Sphere Filled Epoxy
,”
Int. J. Solids Struct.
,
43
(
24
), pp.
7337
7357
.
7.
Kalfus
,
J.
, and
Jancar
,
J.
,
2008
, “
Reinforcing Mechanisms in Amorphous Polymer Nano-Composites
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3444
3447
.
8.
Keddie
,
J. L.
, and
Jones
,
R. A. L.
,
1995
, “
Glass Transition Behavior in Ultra-Thin Polystyrene Films
,”
ISR Chem. Soc.
,
35
, pp.
21
26
.
9.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.
10.
McFarland
,
A. W.
, and
Colton
,
J. S.
,
2005
, “
Role of Material Microstructure in Plate Stiffness With Relevance to Microcantilever Sensors
,”
J. Micromech. Microeng.
,
15
, pp.
1060
1067
.
11.
Liebold
,
C.
, and
Muller
,
W. H.
,
2016
, “
Comparison of Gradient Elasticity Models for the Bending of Micromaterials
,”
Comput. Mater. Sci.
,
116
, pp.
52
61
.
12.
Lam
,
D. C. C.
, and
Chong
,
A. C. M.
,
2000
, “
Effect of Cross-Link Density on Strain Gradient Plasticity in Epoxy
,”
Mater. Sci. Eng. A
,
281
(
1–
2), pp.
156
161
.
13.
Zhang
,
T. Y.
, and
Xu
,
W. H.
,
2002
, “
Surface Effects on Nanoindentation
,”
J. Mater. Res.
,
17
(
7
), pp.
1715
1720
.
14.
Han
,
C. S.
, and
Nikolov
,
S.
,
2007
, “
Indentation Size Effects in Polymers and Related Rotation Gradients
,”
J. Mater. Res.
,
22
(
6
), pp.
1662
1672
.
15.
Han
,
C. S.
,
2010
, “
Influence of the Molecular Structure on Indentation Size Effect in Polymers
,”
Mater. Sci. Eng. A
,
527
(
3
), pp.
619
624
.
16.
Briscoe
,
B. J.
,
Fiori
,
L.
, and
Pelillo
,
E.
,
1998
, “
Nanoindentation of Polymeric Surfaces
,”
J. Phys. D
,
31
(
19
), pp.
2395
2405
.
17.
Chong
,
A. C. M.
, and
Lam
,
D. C. C.
,
1999
, “
Strain Gradient Plasticity Effect in Indentation Hardness of Polymers
,”
J. Mater. Res.
,
14
(
10
), pp.
4103
4110
.
18.
Balta Calleja
,
F. J.
,
Flores
,
A.
, and
Michler
,
G. H.
,
2004
, “
Microindentation Studies at the Near Surface of Glassy Polymers: Influence of Molecular Weight
,”
J. Appl. Polym. Sci.
,
93
, pp.
1951
1956
.
19.
Alisafaei
,
F.
,
Han
,
C. S.
, and
Lakhera
,
N.
,
2014
, “
Characterization of Indentation Size Effects in Epoxy
,”
Polym. Test.
,
40
, pp.
70
78
.
20.
Xu
,
W. H.
,
Xiao
,
Z. Y.
, and
Zhang
,
T. Y.
,
2005
, “
Mechanical Properties of Silicone Elastomer on Temperature in Biomaterial Application
,”
Mater. Lett.
,
59
(
17
), pp.
2153
2155
.
21.
Seltzer
,
R.
,
Kim
,
J. K.
, and
Mai
,
Y. W.
,
2011
, “
Elevated Temperature Nanoindentation Behaviour of Polyamide 6
,”
Polym. Int.
,
60
, pp.
1753
1761
.
22.
Alisafaei
,
F.
, and
Han
,
C. S.
,
2015
, “
Indentation Depth Dependent Mechanical Behavior in Polymers
,”
Adv. Condens. Matter Phys.
,
2015
, p.
391579
.
23.
Dutta
,
A. K.
,
Penumadu
,
D.
, and
Files
,
B.
,
2004
, “
Nanoindentation Testing for Evaluating Modulus and Hardness of Single-Walled Carbon Nanotube-Reinforced Epoxy Composites
,”
J. Mater. Res.
,
19
(
1
), pp.
158
164
.
24.
Shen
,
L.
,
Liu
,
T.
, and
Lv
,
P.
,
2005
, “
Polishing Effect on Nanoindentation Behavior of Nylon 66 and Its Nanocomposites
,”
Polym. Test.
,
24
(
6
), pp.
746
749
.
25.
Chandrashekar
,
G.
, and
Han
,
C. S.
,
2016
, “
Length Scale Effects in Epoxy: The Dependence of Elastic Moduli Measurements on Spherical Indenter Tip Radius
,”
Polym. Test.
,
53
, pp.
227
233
.
26.
Alisafaei
,
F.
,
Han
,
C. S.
, and
Sanei
,
S. H. R.
,
2013
, “
On Time and Depth Dependence of Hardness, Dissipation, and Stiffness in the Indentation of Polydimethylsiloxane
,”
Polym. Test.
,
32
(
7
), pp.
1220
1228
.
27.
Bucsek
,
A. J.
,
Alisafaei
,
F.
,
Han
,
C. S.
, and
Lakhera
,
N.
,
2016
, “
Effect of Crosslink Density on the Indentation Size Effect in Polydimethylsiloxane
,”
Polym. Bull.
,
73
(
3
), pp.
763
772
.
28.
Chandrashekar
,
G.
,
Alisafaei
,
F.
, and
Han
,
C. S.
,
2015
, “
Length Scale Dependent Deformation in Natural Rubber
,”
J. Appl. Polym. Sci.
,
132
, p.
42683
.
29.
Alisafaei
,
F.
,
Han
,
C. S.
, and
Garg
,
N.
,
2016
, “
On Couple Stress Elasto-Plastic Constitutive Frameworks for Glassy Polymers
,”
Int. J. Plast.
,
77
, pp.
30
53
.
30.
Nikolov
,
S.
,
Han
,
C. S.
, and
Raabe
,
D.
,
2007
, “
On the Origin of Size Effects in Small-Strain Elasticity of Solid Polymers
,”
Int. J. Solids Struct.
,
44
(
5
), pp.
1582
1592
(Corrigendum: Int. J. Solids Struct., 2007, 44, p. 7713).
31.
Garg
,
N.
, and
Han
,
C. S.
,
2013
, “
A Penalty Finite Element Approach for Couple Stress Elasticity
,”
Comput. Mech.
,
52
(
3
), pp.
709
720
.
32.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.
33.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple-Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2731
2743
.
34.
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2011
, “
Couple Stress Theory for Solids
,”
Int. J. Solids Struct.
,
48
(
18
), pp.
2496
2510
.
35.
Ghosh
,
S.
,
Kumar
,
A.
,
Sundararaghavan
,
V.
, and
Waas
,
A. M.
,
2013
, “
Non-Local Modeling of Epoxy Using an Atomistically-Informed Kernel
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2837
2845
.
36.
Han
,
C. S.
,
Ma
,
A.
,
Roters
,
F.
, and
Raabe
,
D.
,
2007
, “
A Finite Element Approach With Patch Projection for Strain Gradient Plasticity Formulations
,”
Int. J. Plast.
,
23
(
4
), pp.
690
710
.
37.
Lee
,
M. G.
, and
Han
,
C. S.
,
2012
, “
Patch Projection Based Explicit Finite Element Approach for Strain Gradient Plasticity Formulations
,”
Comput. Mech.
,
49
(
2
), pp.
171
183
.
38.
Petera
,
J.
, and
Pittman
,
J. F. T.
,
1994
, “
Isoparametric Hermite Elements
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
3489
3519
.
39.
Fischer
,
P.
,
Klassen
,
M.
,
Mergheim
,
J.
,
Steinmann
,
P.
, and
Müller
,
R.
,
2011
, “
Isogeometric Analysis of 2D Gradient Elasticity
,”
Comput. Mech.
,
47
(
3
), pp.
325
334
.
40.
Garg
,
N.
, and
Han
,
C. S.
,
2015
, “
An Axisymmetric Finite Element Formulation for Couple Stress Elasticity
,”
Arch. Appl. Mech.
,
85
(
5
), pp.
587
600
.
41.
Garg
,
N.
,
Han
,
C. S.
, and
Alisafaei
,
F.
,
2016
, “
Length Scale Dependence in Elastomers—Comparison of Indentation Experiments With Numerical Simulations
,”
Polymer
,
98
, pp.
201
209
.
42.
Huang
,
Z. M.
,
2001
, “
Micromechanical Prediction of Ultimate Strength of Transversely Isotropic Fibrous Composites
,”
Int. J. Solids Struct.
,
38
(
22–23
), pp.
4147
4172
.
43.
Bazant
,
Z. P.
, and
Christensen
,
M.
,
1972
, “
Analogy Between Micropolar Continuum and Grid Frameworks Under Initial Stress
,”
Int. J. Solids Struct.
,
8
(
3
), pp.
327
346
.
44.
Leonetti
,
L.
,
Greco
,
F.
,
Trovalusci
,
P.
,
Luciano
,
R.
, and
Masiani
,
R.
,
2018
, “
A Multiscale Damage Analysis of Periodic Composites Using a Couple-Stress/Cauchy Multidomain Model: Application to Masonry Structures
,”
Composites B
,
141
, pp.
50
59
.
45.
Bacca
,
M.
,
Dal Corso
,
F.
,
Veber
,
D.
, and
Bigoni
,
D.
,
2013
, “
Anisotropic Effective Higher-Order Response of Heterogeneous Cauchy Elastic Materials
,”
Mech. Res. Commun.
,
54
, pp.
63
71
.
46.
Xue
,
Z.
,
Huang
,
Y.
, and
Li
,
M.
,
2002
, “
Particle Size Effect in Metallic Materials: A Study by the Theory of Mechanism-Based Strain Gradient Plasticity
Acta Mater.
,
50
(
1
), pp.
149
160
.
47.
Chandrashekar
,
G.
, and
Han
,
C. S.
,
2018
, “
Numerical Evaluation of the Size-Dependent Elastic Properties of Cellular Polymers
,”
ASME J. Eng. Mater. Technol.
,
140
(
1
), p.
011004
.
This content is only available via PDF.
You do not currently have access to this content.