A new dynamic strain rate-dependent elasto-viscoplastic damage constitutive model for ultrahigh-performance concrete (UHPC) is developed by incorporating Duvaut–Lions viscoplasticity generalized to multisurface plasticity followed by rate-dependent dynamic damage initiation and evolution under multiaxial loading, to our previous elastoplastic damage model. The predictive capability of the proposed model is compared against experimental results and experimentally observed features from tests on Cor-Tuf concrete, a reactive powder concrete (RPC) and a proprietary UHPC developed by the U.S. Army Corps of Engineers. These experiments were conducted under various compressive loading conditions under low to high confinement and different strain rates, and model predictions demonstrate excellent agreement with these results.

References

References
1.
Williams
,
E. M.
,
Graham
,
S. S.
,
Reed
,
P. A.
, and
Rushing
,
T. S.
,
2009
,
Laboratory Characterization of Cor-Tuf Concrete With and Without Steel Fibers ERDC/GSL TR-09-22
,
US Army Corps of Engineers, Engineering Research and Development Center
,
Vicksburg, MS
.
2.
Karen
,
L.
,
Scrivener
,
R.
, and
James
,
K.
,
2008
, “
Innovation in Use and Research on Cementitious Material
,”
Cem. Concr. Res.
,
38
(
2
), pp.
128
136
.
3.
Xiao
,
J. Z.
,
Schneider
,
H.
,
Donnecke
,
C.
, and
Konig
,
G.
,
2004
, “
Wedge Splitting Test on Fracture Behaviour of Ultra High Strength Concrete
,”
Constr. Build. Mater.
,
18
(
6
), pp.
359
365
.
4.
Habel
,
K.
,
Viviani
,
M.
,
Denarie
,
E.
, and
Bruhwiler
,
E.
,
2006
, “
Development of the Mechanical Properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC)
,”
Cem. Concr. Res.
,
36
(
7
), pp.
1362
1379
.
5.
Charron
,
J. P.
,
Denarie
,
E.
, and
Bruhwiler
,
E.
,
2008
, “
Transport Properties of Water and Glycol in an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) Under High Tensile Deformation
,”
Cem. Concr. Res.
,
38
(
5
), pp.
689
698
.
6.
Rossi
,
P.
,
Arca
,
A.
,
Parant
,
E.
, and
Fakhri
,
P.
,
2005
, “
Bending and Compressive Behaviors of a New Cement Composite
,”
Cem. Concr. Res.
,
35
(
1
), pp.
27
33
.
7.
Rong
,
Z.
,
Sun
,
W.
, and
Zhang
,
Y.
,
2010
, “
Dynamic Compression Behavior of Ultra-High Performance Cement Base Composites
,”
Int. J. Impact Eng.
,
37
(
5
), pp.
515
520
.
8.
Zhang
,
J.
, and
Zhao
,
Y.
,
2016
, “
The Mechanical Properties and Microstructure of Ultra-High-Performance Concrete Containing Various Supplementary Cementitious Materials
,”
J. Sust. Cement Based Mater.
,
6
(
4
), pp.
254
266
.
9.
Buck
,
J. J.
,
McDowell
,
D. L.
, and
Zhou
,
M.
,
2013
, “
Microstructure-Performance Relations of Ultra-High-Performance Concrete Accounting for Effect of Alpha-Quartz-to-Coesite Silica Phase Transformation
,”
Int. J. Solids Struct.
,
50
(
11–12
), pp.
1879
1896
.
10.
Yoo
,
D. Y.
,
Banthia
,
N.
,
Lee
,
J. Y.
, and
Yoon
,
Y. S.
,
2018
, “
Effect of Fiber Geometric Property on Rate Dependent Flexural Behavior of Ultra-High-Performance Cementitious Composite
,”
Cem. Concr. Compos.
,
86
, pp.
57
71
.
11.
Hou
,
X.
,
Cao
,
S.
,
Zheng
,
W.
,
Rong
,
Q.
, and
Li
,
G.
,
2018
, “
Experimental Study on Dynamic Compressive Properties of Fiber-Reinforced Reactive Powder Concrete at High Strain Rates
,”
Eng. Struct.
,
169
, pp.
119
130
.
12.
Yoo
,
D. Y.
, and
Banthia
,
N.
,
2016
, “
Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete: A Review
,”
Cem. Concr. Compos.
,
73
, pp.
267
280
.
13.
Wu
,
Z.
,
Shi
,
C.
,
He
,
W.
, and
Wang
,
D.
,
2017
, “
Static and Dynamic Compressive Properties of Ultra-High Performance Concrete (UHPC) With Hybrid Steel Fiber Reinforcements
,”
Cem. Concr. Compos.
,
79
, pp.
148
157
.
14.
Xu
,
J.
,
Wu
,
C.
,
Xiang
,
H.
,
Sua
,
Y.
,
Li
,
Z.-X.
,
Fang
,
Q.
, and
Hao
,
H.
,
2016
, “
Behaviour of Ultra High Performance Fibre Reinforced Concrete Columns Subjected to Blast Loading
,”
Eng. Struct.
,
118
, pp.
97
107
.
15.
Aoude
,
H.
,
Dagenais
,
F. P.
,
Burrell
,
R. P.
, and
Saatcioglu
,
M.
,
2015
, “
Behavior of Ultra-High Performance Fiber Reinforced Concrete Columns Under Blast Loading
,”
Int. J. Impact Eng.
,
80
, pp.
185
202
.
16.
Habel
,
K.
, and
Gauvreau
,
P.
,
2008
, “
Response of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) to Impact and Static Loading
,”
Cem. Concr. Compos.
,
30
, pp.
938
946
.
17.
Millard
,
S. G.
,
Molyneaus
,
T. C. K.
,
Barnett
,
S. J.
, and
Gao
,
X.
,
2010
, “
Dynamic Enhancement of Blast-Resistant Ultra High Performance Fibre-Reinforced Concrete Under Flexural and Shear Loading
,”
Int. J. Impact Eng.
,
37
, pp.
405
413
.
18.
Parant
,
E.
,
Rossi
,
P.
,
Jacquelin
,
E.
, and
Boulay
,
C.
,
2007
, “
Strain Rate Effect on Bending Behavior of New Ultra-High-Performance Cement-Based Composite
,”
ACI Mater. J.
,
104
(
5
), pp.
458
463
.
19.
Mondal
,
A. B.
, and
Chen
,
W.
,
2013
, “
‘Dynamic Triaxial Compression Experiments on Cor-Tuf Specimens.’ Dynamic Behavior of Materials
,”
Volume 1: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics
,
Lombard, IL
,
June 3–5
.
The Society for Experimental Mechanics
, pp.
245
249
.
20.
Tai
,
Y. S.
,
2010
, “
The Behaviour of Reactive Powder Concrete at High Strain Rates
,”
Mag. Concr. Res.
,
62
(
11
), pp.
763
772
.
21.
Ngo
,
T.
,
Mendis
,
P.
, and
Krauthammer
,
T.
,
2007
, “
Behavior of Ultrahigh-Strength Prestressed Concrete Panels Subjected to Blast Loading
,”
ASCE J. Struct. Eng.
,
133
(
11
), pp.
1582
1590
.
22.
Wu
,
C.
,
Oehlers
,
D. J.
,
Rebentrost
,
M.
,
Leach
,
J.
, and
Whittaker
,
A. S.
,
2009
, “
Blast Testing of Ultra-High Performance Fibre Concrete Slabs and FRP Retrofitted RC Slabs
,”
Eng. Struct.
,
31
(
9
), pp.
2060
2069
.
23.
Ellis
,
B. D.
,
DiPaolo
,
B. P.
,
McDowell
,
D. L.
, and
Zhou
,
M.
,
2014
, “
Experimental Investigation and Multiscale Modeling of Ultra-High-Performance Concrete Panels Subject to Blast Loading
,”
Int. J. Impact Eng.
,
69
, pp.
95
103
.
24.
Yi
,
N. H.
,
Kim
,
J. H. J.
,
Han
,
T. S.
,
Cho
,
Y. G.
, and
Lee
,
J. H.
,
2012
, “
Blast-Resistant Characteristics of Ultra-High Strength Concrete and Reactive Powder Concrete
,”
Constr. Build. Mater.
,
28
(
1
), pp.
694
707
.
25.
Paliwal
,
B.
,
Hammi
,
Y.
,
Moser
,
R. D.
, and
Horstemeyer
,
M. F.
,
2017
, “
A Three-Invariant Cap-Plasticity Damage Model for Cementitious Materials
,”
Int. J. Solids Struct.
108
, pp.
186
202
.
26.
Simo
,
J. C.
,
Kennedy
,
J. G.
, and
Govindjee
,
S.
,
1988
, “
Non-Smooth Multisurface Plasticity and Viscoplasticity. Loading/Unloading Conditions and Numerical Algorithms
,”
Int. J. Num. Methods Eng.
,
26
(
10
), pp.
2161
2185
.
27.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity
,
Springer
,
Wiggins
.
28.
Lemaitre
,
J.
,
1985
, “
Coupled Elasto-Plasticity and Damage Constitutive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
51
(
1–3
), pp.
31
49
.
29.
Lee
,
J.
, and
Fenves
,
G. L.
,
1998
, “
Plastic Damage Model for Cyclic Loading of Concrete Structures
,”
J. Eng. Mech.
,
124
(
8
), pp.
892
900
.
30.
Lubliner
,
J.
,
Oliver
,
J.
,
Oller
,
S.
, and
Onate
,
E.
,
1989
, “
A Plastic-Damage Model for Concrete
,”
Int. J. Solids Struct.
,
25
(
3
), pp.
299
326
.
31.
Willam
,
K. J.
, and
Warnke
,
E. P.
,
1975
, “
Constitutive Model for the Triaxial Behavior of Concrete
,”
ISMES Seminar on Concrete Structures Subjected to Triaxial Stresses
,
Bergamo, Italy
,
May 17–19
, pp.
1
30
.
32.
Pramono
,
E.
, and
Willam
,
K. J.
,
1989
, “
Fracture Energy-Based Plasticity Formulation of Plain Concrete
,”
J. Eng. Mech.
,
115
(
6
), pp.
1183
1204
.
33.
Etse
,
G.
, and
Willam
,
K.
,
1994
, “
Fracture Energy Formulation for Inelastic Behavior of Plain Concrete
,”
J. Eng. Mech.
,
120
(
9
), pp.
1983
2011
.
34.
Menétrey
,
P.
,
Walther
,
R.
,
Zimmermann
,
T.
,
Willam
,
K. J.
, and
Regan
,
P. E.
,
1997
, “
Simulation of Punching Failure in Reinforced-Concrete Structures
,”
J. Struct. Eng.
,
123
(
5
), pp.
652
659
.
35.
Folino
,
P.
, and
Etse
,
G.
,
2012
, “
Performance Dependent Model for Normal and High Strength Concretes
,”
Int. J. Solids Struct.
,
49
(
5
), pp.
701
719
.
36.
Grassl
,
P.
,
Xenos
,
D.
,
Nyström
,
U.
,
Rempling
,
R.
, and
Gylltoft
,
K.
,
2013
, “
CDPM2: A Damage–Plasticity Approach to Modelling the Failure of Concrete
,”
Int. J. Solids Struct.
,
50
(
24
), pp.
3805
3816
.
37.
Murray
,
Y. D.
,
2007
,
Users Manual for LS-DYNA Concrete Material Model 159 (May 2007)
, Publication No. FHWA-HRT-05-062,
US Department of Transportation, Federal Highway Administration
,
McLean, VA
.
38.
Araoz
,
G.
, and
Luccioni
,
B.
,
2015
, “
Modeling Concrete Like Materials Under Sever Dynamic Pressures
,”
Int. J. Impact Eng.
,
76
, pp.
139
154
.
39.
Paliwal
,
B.
, and
Ramesh
,
K. T.
,
2008
, “
An Interacting Micro-Crack Damage Model for Failure of Brittle Materials Under Compression
,”
J. Mech. Phys. Solids
,
56
(
3
), pp.
896
923
.
You do not currently have access to this content.