Abstract

The ductile failure predictions have been an issue in many engineering applications. It begins with a design of machines and tools, continues with an evaluation of manufacturing processes, and last but not least ends with the assessment of various structures. The paper deals with a predictability of used criteria for a random structure of aluminum alloy 2024-T351, which was performed under the conditions of room temperature three-point bending. The bi-failure mode creates a space for the numerical studies of various approaches and gives an insight into the model performance. The plasticity was described by Lode-dependent yield criterion, which was coupled with several pressure and Lode-dependent fracture models to form a continuum damage mechanics approach via the material weakening. It was incorporated through a nonlinear damage accumulation, which was finally implemented using Fortran 77 subroutine into abaqus/explicit. All the models exhibited a good ability of crack onset prediction in terms of the force responses and realistic predictability of the crack propagation. The field of deformations was successfully compared with experimental data obtained by an optical method.

References

References
1.
Terhorst
,
M.
,
Feuerhack
,
A.
,
Trauth
,
D.
, and
Klocke
,
F.
,
2016
, “
Extension of the Normalized Cockcroft and Latham Criterion With Temperature-Dependent Critical Damage Values for Predicting Chevron Cracks in Solid Forward Extrusion
,”
Int. J. Mater. Form.
,
9
(
4
), pp.
449
456
. 10.1007/s12289-015-1231-1
2.
Sun
,
Y.
,
Voyiadjis
,
G. Z.
,
Hu
,
W.
,
Meng
,
Q.
, and
Xu
,
Y.
,
2017
, “
Fatigue Damage Analysis of Double-Lap Bolted Joints Considering the Effects of Hole Cold Expansion and Bolt Clamping Force
,”
ASME J. Eng. Mater. Technol.
,
139
(
2
), p.
021007
. 10.1115/1.4035325
3.
Bhalerao
,
N. B.
,
Joshi
,
S. S.
, and
Naik
,
N. K.
,
2018
, “
High Strain Rate and High Temperature Behavior of Ti–6Al–4 V Alloy Under Compressive Loading
,”
ASME J. Eng. Mater. Technol.
,
140
(
2
), p.
021009
. 10.1115/1.4038671
4.
Driemeier
,
L.
,
Moura
,
R. T.
,
Machado
,
I. F.
, and
Alves
,
M.
,
2015
, “
A Bifailure Specimen for Accessing Failure Criteria Performance
,”
Int. J. Plast.
,
71
, pp.
62
86
. 10.1016/j.ijplas.2015.02.013
5.
Cao
,
T. S.
,
2017
, “
Models for Ductile Damage and Fracture Prediction in Cold Bulk Metal Forming Processes: A Review
,”
Int. J. Mater. Form.
,
10
(
2
), pp.
139
171
. 10.1007/s12289-015-1262-7
6.
Bažant
,
Z. P.
,
Luo
,
W.
,
Chau
,
V. T.
, and
Bessa
,
M. A.
,
2016
, “
Wave Dispersion and Basic Concepts of Peridynamics Compared to Classical Nonlocal Damage Models
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111004
. 10.1115/1.4034319
7.
Chica
,
E. L.
,
Ibán
,
A. L.
,
Terán
,
J. M. G.
, and
López-Reyes
,
P. M.
,
2010
, “
Influence of Ductile Damage Evolution on the Collapse Load of Frames
,”
ASME J. Appl. Mech.
,
77
(
3
), p.
034502
. 10.1115/1.4000427
8.
Cortese
,
L.
,
Nalli
,
F.
, and
Rossi
,
M.
,
2016
, “
A Nonlinear Model for Ductile Damage Accumulation Under Multiaxial Non-Proportional Loading Conditions
,”
Int. J. Plast.
,
85
, pp.
77
92
. 10.1016/j.ijplas.2016.07.003
9.
Wen
,
H.
, and
Mahmoud
,
H.
,
2015
, “
New Model for Ductile Fracture of Metal Alloys. II: Reverse Loading
,”
J. Eng. Mech.
,
142
(
2
), p.
04015089
. 10.1061/(ASCE)EM.1943-7889.0001010
10.
Erice
,
B.
,
Roth
,
C. C.
, and
Mohr
,
D.
,
2018
, “
Stress-State and Strain-Rate Dependent Ductile Fracture of Dual and Complex Phase Steel
,”
Mech. Mater.
,
116
, pp.
11
32
. 10.1016/j.mechmat.2017.07.020
11.
Aboutalebi
,
F. H.
,
Poursina
,
M.
,
Nejatbakhsh
,
H.
, and
Khataei
,
M.
,
2018
, “
Numerical Simulations and Experimental Validations of a Proposed Ductile Damage Model for DIN1623 St12 Steel
,”
Eng. Fract. Mech.
,
192
, pp.
276
289
. 10.1016/j.engfracmech.2017.12.041
12.
Cao
,
J.
,
Li
,
F.
,
Ma
,
X.
, and
Sun
,
Z.
,
2018
, “
A Modified Elliptical Fracture Criterion to Predict Fracture Forming Limit Diagrams for Sheet Metals
,”
J. Mater. Process. Technol.
,
252
, pp.
116
127
. 10.1016/j.jmatprotec.2017.09.018
13.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2008
, “
A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence
,”
Int. J. Plast.
,
24
(
6
), pp.
1071
1096
. 10.1016/j.ijplas.2007.09.004
14.
Španiel
,
M.
,
Prantl
,
A.
,
Džugan
,
J.
,
Růžička
,
J.
,
Moravec
,
M.
, and
Kuželka
,
J.
,
2014
, “
Calibration of Fracture Locus in Scope of Uncoupled Elastic–Plastic-Ductile Fracture Material Models
,”
Adv. Eng. Softw.
,
72
, pp.
95
108
. 10.1016/j.advengsoft.2013.05.007
15.
Džugan
,
J.
,
Španiel
,
M.
,
Prantl
,
A.
,
Konopík
,
P.
,
Růžička
,
J.
, and
Kuželka
,
J.
,
2018
, “
Identification of Ductile Damage Parameters for Pressure Vessel Steel
,”
Nucl. Eng. Des.
,
328
, pp.
372
380
. 10.1016/j.nucengdes.2015.12.014
16.
Jia
,
Y.
, and
Bai
,
Y.
,
2016
, “
Ductile Fracture Prediction for Metal Sheets Using All-Strain-Based Anisotropic eMMC Model
,”
Int. J. Mech. Sci.
,
115–116
, pp.
516
531
. 10.1016/j.ijmecsci.2016.07.022
17.
Algarni
,
M.
,
Choi
,
Y.
, and
Bai
,
Y.
,
2017
, “
A Unified Material Model for Multiaxial Ductile Fracture and Extremely Low Cycle Fatigue of Inconel 718
,”
Int. J. Fatigue
,
96
, pp.
162
177
. 10.1016/j.ijfatigue.2016.11.033
18.
Halama
,
R.
,
Fusek
,
M.
, and
Poruba
,
Z.
,
2016
, “
Influence of Mean Stress and Stress Amplitude on Uniaxial and Biaxial Ratcheting of ST52 Steel and Its Prediction by the AbdelKarim–Ohno Model
,”
Int. J. Fatigue
,
91
(
2
), pp.
313
321
. 10.1016/j.ijfatigue.2016.04.033
19.
Halama
,
R.
,
Markopoulos
,
A.
,
Jančo
,
R.
, and
Bartecký
,
M.
,
2017
, “
Implementation of MAKOC Cyclic Plasticity Model With Memory
,”
Adv. Eng. Softw.
,
113
, pp.
34
46
. 10.1016/j.advengsoft.2016.10.009
20.
Wu
,
B.
,
Li
,
X.
,
Di
,
Y.
,
Brinnel
,
V.
,
Lian
,
J.
, and
Münstermann
,
S.
,
2017
, “
Extension of the Modified Bai-Wierzbicki Model for Predicting Ductile Fracture Under Complex Loading Conditions
,”
Fatigue Fract. Eng. Mater. Struct.
,
40
(
12
), pp.
2152
2168
. 10.1111/ffe.12645
21.
Xiao
,
Y.
,
Tang
,
Q.
,
Hu
,
Y.
,
Peng
,
J.
, and
Luo
,
W.
,
2018
, “
Flow and Fracture Study for ZK60 Alloy at Dynamic Strain Rates and Different Loading States
,”
Mater. Sci. Eng. A
,
724
, pp.
208
219
. 10.1016/j.msea.2018.03.050
22.
Roth
,
C. C.
, and
Mohr
,
D.
,
2014
, “
Effect of Strain Rate on Ductile Fracture Initiation in Advanced High Strength Steel Sheets: Experiments and Modeling
,”
Int. J. Plast.
,
56
, pp.
19
44
. 10.1016/j.ijplas.2014.01.003
23.
Mohr
,
D.
, and
Marcadet
,
S. J.
,
2015
, “
Micromechanically-Motivated Phenomenological Hosford–Coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialities
,”
Int. J. Solids Struct.
,
67–68
, pp.
40
55
. 10.1016/j.ijsolstr.2015.02.024
24.
Fras
,
T.
,
Roth
,
C. C.
, and
Mohr
,
D.
,
2018
, “
Fracture of High-Strength Armor Steel Under Impact Loading
,”
Int. J. Impact Eng.
,
111
, pp.
147
164
. 10.1016/j.ijimpeng.2017.09.009
25.
Gorji
,
M. B.
, and
Mohr
,
D.
,
2018
, “
Predicting Shear Fracture of Aluminum 6016-T4 During Deep Drawing: Combining Yld-2000 Plasticity With Hosford–Coulomb Fracture Model
,”
Int. J. Mech. Sci.
,
137
, pp.
105
120
. 10.1016/j.ijmecsci.2018.01.008
26.
Lou
,
Y.
,
Huh
,
H.
,
Lim
,
S.
, and
Pack
,
K.
,
2012
, “
New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals
,”
Int. J. Solids Struct.
,
49
(
25
), pp.
3605
3615
. 10.1016/j.ijsolstr.2012.02.016
27.
Habibi
,
N.
,
Ramazani
,
A.
,
Sundararaghavan
,
V.
, and
Prahl
,
U.
,
2018
, “
Failure Predictions of DP600 Steel Sheets Using Various Uncoupled Fracture Criteria
,”
Eng. Fract. Mech.
,
190
, pp.
367
381
. 10.1016/j.engfracmech.2017.12.022
28.
Lou
,
Y.
, and
Huh
,
H.
,
2013
, “
Extension of a Shear-Controlled Ductile Fracture Model Considering the Stress Triaxiality and the Lode Parameter
,”
Int. J. Solids Struct.
,
50
(
2
), pp.
447
455
. 10.1016/j.ijsolstr.2012.10.007
29.
Lou
,
Y.
, and
Huh
,
H.
,
2013
, “
Prediction of Ductile Fracture for Advanced High Strength Steel With a New Criterion: Experiments and Simulation
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1284
1302
. 10.1016/j.jmatprotec.2013.03.001
30.
Lou
,
Y.
,
Yoon
,
J. W.
, and
Huh
,
H.
,
2014
, “
Modeling of Shear Ductile Fracture Considering a Changeable Cut-Off Value for Stress Triaxiality
,”
Int. J. Plast.
,
54
, pp.
56
80
. 10.1016/j.ijplas.2013.08.006
31.
Lou
,
Y.
, and
Yoon
,
J. W.
,
2017
, “
Anisotropic Ductile Fracture Criterion Based on Linear Transformation
,”
Int. J. Plast.
,
93
, pp.
3
25
. 10.1016/j.ijplas.2017.04.008
32.
Park
,
N.
,
Huh
,
H.
,
Lim
,
S. J.
,
Lou
,
Y.
,
Kang
,
Y. S.
, and
Seo
,
M. H.
,
2017
, “
Fracture-Based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming
,”
Int. J. Plast.
,
96
, pp.
1
35
. 10.1016/j.ijplas.2016.04.014
33.
Lou
,
Y.
, and
Yoon
,
J. W.
,
2017
, “
Anisotropic Yield Function Based on Stress Invariants for BCC and FCC Metals and Its Extension to Ductile Fracture Criterion
,”
Int. J. Plast.
,
101
, pp.
125
155
. 10.1016/j.ijplas.2017.10.012
34.
Hou
,
Y.
,
Sapanathan
,
T.
,
Dumon
,
A.
,
Culière
,
P.
, and
Rachik
,
M.
,
2018
, “
A Novel Development of Bi-Level Reduced Surrogate Model to Predict Ductile Fracture Behaviors
,”
Eng. Fract. Mech.
,
188
, pp.
232
249
. 10.1016/j.engfracmech.2017.08.021
35.
Roth
,
C. C.
, and
Mohr
,
D.
,
2016
, “
Ductile Fracture Experiments With Locally Proportional Loading Histories
,”
Int. J. Plast.
,
79
, pp.
328
354
. 10.1016/j.ijplas.2015.08.004
36.
Gorji
,
M. B.
, and
Mohr
,
D.
,
2017
, “
Micro-Tension and Micro-Shear Experiments to Characterize Stress-State Dependent Ductile Fracture
,”
Acta Mater.
,
131
, pp.
65
76
. 10.1016/j.actamat.2017.03.034
37.
Papasidero
,
J.
,
Doquet
,
V.
, and
Lepeer
,
S.
,
2014
, “
Multiscale Investigation of Ductile Fracture Mechanisms and Strain Localization Under Shear Loading in 2024-T351 Aluminum Alloy and 36NiCrMo16 Steel
,”
Mater. Sci. Eng. A
,
610
, pp.
203
219
. 10.1016/j.msea.2014.05.032
38.
Teng
,
X.
,
Mae
,
H.
,
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2009
, “
Pore Size and Fracture Ductility of Aluminum Low Pressure Die Casting
,”
Eng. Fract. Mech.
,
76
(
8
), pp.
983
996
. 10.1016/j.engfracmech.2009.01.001
39.
Malcher
,
L.
,
Andrade Pires
,
F. M.
, and
César de Sá
,
J. M. A.
,
2014
, “
An Extended GTN Model for Ductile Fracture Under High and Low Stress Triaxiality
,”
Int. J. Plast.
,
54
, pp.
193
228
. 10.1016/j.ijplas.2013.08.015
40.
Morin
,
L.
,
Leblond
,
J.-B.
,
Mohr
,
D.
, and
Kondo
,
D.
,
2017
, “
Prediction of Shear-Dominated Ductile Fracture in a Butterfly Specimen Using a Model of Plastic Porous Solids Including Void Shape Effects
,”
Eur. J. Mech. A Solids
,
61
, pp.
433
442
. 10.1016/j.euromechsol.2016.10.014
41.
Pack
,
K.
, and
Marcadet
,
S. J.
,
2016
, “
Numerical Failure Analysis of Three-Point Bending on Martensitic Hat Assembly Using Advanced Plasticity and Fracture Models for Complex Loading
,”
Int. J. Solids Struct.
,
85–86
, pp.
144
159
. 10.1016/j.ijsolstr.2016.02.014
42.
Papasidero
,
J.
,
Doquet
,
V.
, and
Mohr
,
D.
,
2014
, “
Determination of the Effect of Stress State on the Onset of Ductile Fracture Through Tension-Torsion Experiments
,”
Exp. Mech.
,
54
(
2
), pp.
137
151
. 10.1007/s11340-013-9788-4
43.
Šebek
,
F.
,
Kubík
,
P.
,
Petruška
,
J.
, and
Hůlka
,
J.
,
2016
, “
Extremely Low-Stress Triaxiality Tests in Calibration of Fracture Models in Metal-Cutting Simulation
,”
Metall. Mater. Trans. A
,
47
(
11
), pp.
5302
5312
. 10.1007/s11661-016-3489-4
44.
Derpenski
,
L.
, and
Seweryn
,
A.
,
2016
, “
Ductile Fracture of EN-AW 2024 Aluminum Alloy Specimens With Notches Under Biaxial Loading. Part 1—Experimental Research
,”
Theor. Appl. Fract. Mech.
,
84
, pp.
192
202
. 10.1016/j.tafmec.2016.06.007
45.
Derpenski
,
L.
, and
Seweryn
,
A.
,
2016
, “
Ductile Fracture of EN-AW 2024 Aluminum Alloy Specimens With Notches Under Biaxial Loading. Part 2—Numerical Research and Ductile Fracture Criterion
,”
Theor. Appl. Fract. Mech.
,
84
, pp.
203
214
. 10.1016/j.tafmec.2016.06.008
46.
Derpenski
,
L.
,
Szusta
,
J.
, and
Seweryn
,
A.
,
2018
, “
Damage Accumulation and Ductile Fracture Modeling of Notched Specimens Under Biaxial Loading at Room Temperature
,”
Int. J. Solids Struct.
,
134
, pp.
1
19
. 10.1016/j.ijsolstr.2017.10.028
47.
Benzerga
,
A. A.
,
Surovik
,
D.
, and
Keralavarma
,
S. M.
,
2012
, “
On the Path-Dependence of the Fracture Locus in Ductile Materials—Analysis
,”
Int. J. Plast.
,
37
, pp.
157
170
. 10.1016/j.ijplas.2012.05.003
48.
Basu
,
S.
, and
Benzerga
,
A. A.
,
2015
, “
On the Path-Dependence of the Fracture Locus in Ductile Materials: Experiments
,”
Int. J. Solids Struct.
,
71
, pp.
79
90
. 10.1016/j.ijsolstr.2015.06.003
49.
Thomas
,
N.
,
Basu
,
S.
, and
Benzerga
,
A. A.
,
2016
, “
On Fracture Loci of Ductile Materials Under Non-Proportional Loading
,”
Int. J. Mech. Sci.
,
117
, pp.
135
151
. 10.1016/j.ijmecsci.2016.08.007
50.
Brünig
,
M.
,
Gerke
,
S.
, and
Schmidt
,
M.
,
2016
, “
Biaxial Experiments and Phenomenological Modeling of Stress-State-Dependent Ductile Damage and Fracture
,”
Int. J. Fract.
,
200
(
1–2
), pp.
63
76
. 10.1007/s10704-016-0080-3
51.
Gerke
,
S.
,
Adulyasak
,
P.
, and
Brünig
,
M.
,
2017
, “
New Biaxially Loaded Specimens for the Analysis of Damage and Fracture in Sheet Metals
,”
Int. J. Solids Struct.
,
110–111
, pp.
209
218
. 10.1016/j.ijsolstr.2017.01.027
52.
Brünig
,
M.
,
Gerke
,
S.
, and
Schmidt
,
M.
,
2018
, “
Damage and Failure at Negative Stress Triaxialities: Experiments, Modeling and Numerical Simulations
,”
Int. J. Plast.
,
102
, pp.
70
82
. 10.1016/j.ijplas.2017.12.003
53.
Qian
,
L.
,
Paredes
,
M.
,
Wierzbicki
,
T.
,
Sparrer
,
Y.
,
Feuerstein
,
M.
,
Zeng
,
P.
, and
Fang
,
G.
,
2016
, “
Experimental and Numerical Study on Shear-Punch Test of 6060 T6 Extruded Aluminum Profile
,”
Int. J. Mech. Sci.
,
118
, pp.
205
218
. 10.1016/j.ijmecsci.2016.09.008
54.
Andrés
,
D.
, and
Dymáček
,
P.
,
2016
, “
Study of the Upper Die Clamping Conditions in the Small Punch Test
,”
Theor. Appl. Fract. Mech.
,
86
(
A
), pp.
117
123
. 10.1016/j.tafmec.2016.07.012
55.
Wierzbicki
,
T.
,
Bao
,
Y.
,
Lee
,
Y.-W.
, and
Bai
,
Y.
,
2005
, “
Calibration and Evaluation of Seven Fracture Models
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
719
743
. 10.1016/j.ijmecsci.2005.03.003
56.
Papasidero
,
J.
,
Doquet
,
V.
, and
Mohr
,
D.
,
2015
, “
Ductile Fracture of Aluminum 2024-T351 Under Proportional and Non-Proportional Multi-Axial Loading: Bao–Wierzbicki Results Revisited
,”
Int. J. Solids Struct.
,
69–70
, pp.
459
474
. 10.1016/j.ijsolstr.2015.05.006
57.
Seidt
,
J. D.
,
2010
, “
Plastic Deformation and Ductile Fracture of 2024-T351 Aluminum Under Various Loading Conditions
,” Ph.D. thesis,
The Ohio State University
,
Columbus, OH
.
58.
Šebek
,
F.
,
Petruška
,
J.
, and
Kubík
,
P.
,
2018
, “
Lode Dependent Plasticity Coupled With Nonlinear Damage Accumulation for Ductile Fracture of Aluminium Alloy
,”
Mater. Des.
,
137
, pp.
90
107
. 10.1016/j.matdes.2017.09.064
59.
Kubík
,
P.
,
Šebek
,
F.
, and
Petruška
,
J.
,
2018
, “
Notched Specimen Under Compression for Ductile Failure Criteria
,”
Mech. Mater.
,
125
, pp.
94
109
. 10.1016/j.mechmat.2018.07.004
60.
Barsoum
,
I.
, and
Al-Khaled
,
M. A.
,
2018
, “
The Sensitivity to the Lode Parameter in Ductile Failure of Tubular Steel Grades
,”
ASME J. Pressure Vessel Technol.
,
140
(
3
), p.
031402
. 10.1115/1.4039392
61.
Jeník
,
I.
,
Kubík
,
P.
,
Šebek
,
F.
,
Hůlka
,
J.
, and
Petruška
,
J.
,
2017
, “
Sequential Simulation and Neural Network in the Stress–Strain Curve Identification Over the Large Strains Using Tensile Test
,”
Arch. Appl. Mech.
,
87
(
6
), pp.
1077
1093
. 10.1007/s00419-017-1234-0
62.
Kroon
,
M.
, and
Faleskog
,
J.
,
2013
, “
Numerical Implementation of a J2- and J3-Dependent Plasticity Model Based on a Spectral Decomposition of the Stress Deviator
,”
Comput. Mech.
,
52
(
5
), pp.
1059
1070
. 10.1007/s00466-013-0863-6
63.
Barsoum
,
I.
,
Lawal
,
S. A.
,
Simmons
,
R. J.
, and
Rodrigues
,
C. C.
,
2018
, “
Failure Analysis of a Pressure Vessel Subjected to an Internal Blast Load
,”
Eng. Failure Anal.
,
91
, pp.
354
369
. 10.1016/j.engfailanal.2018.04.037
64.
Šebek
,
F.
,
Kubík
,
P.
,
Hůlka
,
J.
, and
Petruška
,
J.
,
2016
, “
Strain Hardening Exponent Role in Phenomenological Ductile Fracture Criteria
,”
Eur. J. Mech. A Solids
,
57
, pp.
149
164
. 10.1016/j.euromechsol.2015.12.006
65.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2010
, “
Application of Extended Mohr–Coulomb Criterion to Ductile Fracture
,”
Int. J. Fract.
,
161
(
1
), pp.
1
20
. 10.1007/s10704-009-9422-8
66.
Mu
,
L.
,
Zang
,
Y.
,
Wang
,
Y.
,
Li
,
X. L.
, and
Stemler
,
P. M. A.
,
2018
, “
Phenomenological Uncoupled Ductile Fracture Model Considering Different Void Deformation Modes for Sheet Metal Forming
,”
Int. J. Mech. Sci.
,
141
, pp.
408
423
. 10.1016/j.ijmecsci.2018.04.025
You do not currently have access to this content.