The evolving microstructural model of inelasticity (EMMI) previously developed as an improvement over the Bammann–Chiesa–Johnson (BCJ) material model is well known to describe the macroscopic nonlinear behavior of polycrystalline metals subjected to rapid external loads such as those encountered during high-rate events possibly near shock regime. The improved model accounts for deformation mechanisms such as thermally activated dislocation motion, generation, annihilation, and drag. It also accounts for the effects of material texture, recrystallization and grain growth and void nucleation, growth, and coalescence. The material incompatibilities, previously disregard in the aforementioned model, manifest themselves as structural misorientation where ductile failure often initiates are currently being considered. To proceed, the representation of material incompatibility is introduced into the EMMI model by incorporating the distribution of the geometrically necessary defects such as dislocations and disclination. To assess the newly proposed formulation, classical elastic solutions of benchmarks problems including far-field stress applied to the boundary of body containing a defect, e.g., voids, cracks, and dislocations, are used to compute the plastic velocity gradient for various states of the material in terms of assumed values of the internal state variables. The full-field state of the inelastic flow is then computed, and the spatial dependence of the dislocations and disclination density is determined. The predicted results shows good agreement with finding of dislocation theory.

References

References
1.
Clayton
,
J. D.
,
McDowell
,
D. L.
, and
Bammann
,
D. J.
,
2006
, “
Modeling Dislocations and Disclinations With Finite Micropolar Elastoplasticity
,”
Int. J. Plast.,
22
(
2
), pp.
210
256
.
2.
Stolken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.,
46
(
14
), pp.
5109
5115
.
3.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.
4.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size Dependent Hardness in Silver Single Crystal
,”
J. Mater. Res.,
10
(
4
), pp.
261
278
.
5.
McEkhaney
,
K. W.
,
Vlassak
,
J. J.
, and
Nix
,
W. D.
,
1998
, “
Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sensing Indentation Experiments
,”
J. Mater. Res.,
13
(
5
), pp.
1300
1306
.
6.
Pool
,
W. J.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
1996
, “
Micro-Hardness Tests on Annealed and Work-Hardened Copper Polycrystals
,”
Scripta Metall. Mater.,
34
(
4
), pp.
559
564
.
7.
Stelmashenko
,
N. A.
,
Walls
,
M. G.
,
Brown
,
L. M.
, and
Miman
,
Y. V.
,
1993
, “
Microindentation on W and Mo Oriented Single Crystals: An SEM Study
,”
Acta Metall. Mater.,
41
(
10
), pp.
2855
2865
.
8.
Nédélec
,
J. C.
,
1983
, “
Mixed Finite Element in R3
,”
Numer. Math.,
35
(
3
), pp.
315
341
.
9.
Jin
,
J.
,
2002
,
The Finite Element Method in Electromagnetics
,
Wiley
,
New York
.
10.
Regueiro
,
R. A.
,
Dixit
,
P.
, and
Garikipati
,
K.
,
2007
, “
On Standard and Vector Finite Element Analysis of a Strict Anti-Plane Shear Plasticity Model With Elastic Curvature
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
25–28
), pp.
2692
2712
.
11.
Roy
,
A.
, and
Acharya
,
A.
,
2005
, “
Finite Element Approximation of Field Dislocation Mechanics
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
143
170
.
12.
Richeton
,
T.
, and
Berbenni
,
S.
,
2014
, “
From Bicrystals to Spherical Inclusions: A Superposition Method to Derive Analytical Expressions of Stress Fields in Presence of Plastic Strain Gradients
,”
Int. J Solids Struct.,
55
(
3–4
), pp.
794
807
.
13.
Yong-Shin
,
L.
, and
Dawson
,
P. R.
,
1992
, “
Modeling Ductile Void Growth in Visco-Plastic Material-Part I: Void Growth Model
,”
Mech. Mater.,
15
(
1
), pp.
21
31
.
14.
Marin
,
E. B.
,
Bammann
,
D. J.
,
Regueiro
,
R. A.
, and
Johnson
,
G. C.
,
2006
, “
On the Formulation, Parameter Identification and Numerical Integration of the EMMI Model: Plasticity and Isotropic Damage
,”
Sandia National Laboratories
,
Livermore, CA
, Report No. SAND2006-0200.
15.
Ning
,
J.
, and
Aifantis
,
E. C.
,
1996
, “
Anisotropic Yield and Plastic Flow of Polycrystalline Solids
,”
Int. J. Plast.
,
12
(
10
), pp.
1221
1240
.
16.
Lee
,
E. H.
, and
Liu
,
D. T.
,
1967
, “
Finite-Strain Elastic-Plastic Theory With Application to Plane-Wave Analysis
,”
J. Appl. Phys.
,
38
(
1
), pp.
19
27
.
17.
Lee
,
E. H.
,
1969
,
“Elastic-Plastic Deformation at Finite Strains
,”
J. Appl. Mech.
,
36
(
1
), pp.
1
6
.
18.
Coleman
,
B. D.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Rat. Mech. Anal.
,
13
(
1
), pp.
167
178
.
19.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1959
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
,
47
(
2
), pp.
597
613
.
20.
Kocks
,
U. F.
, and
Mecking
,
H.
,
1979
, “
A Mechanism for Static and Dynamic Recovery
,”
Strength of Metals and Alloys, Proceedings of the 5th International Conference
,
Aachen, Federal Republic of Germany
,
Aug. 27–31
, pp.
345
350
.
21.
Estrin
,
Y.
, and
Mecking
,
H.
,
1984
, “
A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models
,”
Acta Metall.
,
32
(
1
), pp.
57
70
.
22.
Nes
,
E.
,
1995
, “
Recovery Revisited
,”
Acta. Metall. Mater.
,
43
(
6
), pp.
2189
2207
.
23.
Bammann
,
D. J.
,
Chiesa
,
M. L.
, and
Johnson
,
G. C.
,
1996
, “
Modeling Large Deformation and Failure in Manufacturing Processes
,”
Theor. Appl. Mech.,
9
, pp.
359
376
.
24.
Brown
,
A.
, and
Bammann
,
D. J.
,
2012
, “
Validation of a Model for Static and Dynamic Recrystallization in Metals
,”
Int. J. Plast.
,
32
(
33
), pp.
17
35
.
25.
Advani
,
S. G.
, and
Tucker
,
C. L.
, III
,
1987
, “
The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites
,”
J. Rheol.
,
31
(
8
), pp.
751
784
.
26.
Advani
,
S. G.
, and
Tucker
,
C. L.
, III
,
1990
, “
Closure Approximations for Three-Dimensional Structure Tensors
,”
J. Rheol.
,
34
(
3
), pp.
367
386
.
27.
Prantil
,
V. C.
,
Jenkins
,
J. T.
, and
Dawson
,
P. R.
,
1993
, “
An Analysis of Texture and Plastic Spin for Planar Polycrystals
,”
J. Mech. Phys. Solids
,
41
(
8
), pp.
1357
1382
.
28.
Lubarda
,
V. A.
, and
Krajcinovic
,
D.
,
1995
, “
Some Fundamental Issues in Rate Theory of Damage-Elastoplasticity
,”
Int. J. Plast.
,
11
(
7
), pp.
763
797
.
29.
Marin
,
E. B.
, and
Garikipati
,
K.
,
2002
, “
A Nonlocal Phenomenological Anisotropic Finite Deformation Plasticity Model Accounting for Dislocation Defects
,”
ASME J. Eng. Mater. Technol.
,
124
(
3
), pp.
380
386
.
30.
Wegener
,
K.
, and
Schlegel
,
M.
,
1996
, “
Suitability of Yield Functions for the Approximation of Subsequent Yield Surfaces
,”
Int. J. Plast.
,
12
(
9
), pp.
1151
1177
.
31.
Miller
,
M. P.
,
Harley
,
E. J.
, and
Bammann
,
D. J.
,
1996
, “
Reverse Yield Experiments and Internal Variable Evolution in Polycrystalline Metals
,”
Int. J. Plast.
,
15
(
1
), pp.
93
117
.
32.
François
,
M.
,
2001
, “
A Plasticity Model With Yield Surface Distortion for Non Proportional Loading
,”
Int. J. Plast.
,
17
(
5
), pp.
703
717
.
33.
Bammann
,
D. J.
, and
Aifantis
,
E. C.
,
1987
, “
A Model for Finite-Deformation Plasticity
,”
Acta Mech.
,
69
(
1–4
), pp.
97
117
.
34.
Dafalias
,
Y. F.
,
1984
, “
A Missing Link in the Formulation and Numerical Implementation of Finite Transformation Elastoplasticity
,”
Constitutive Equations: Macro and Computational Aspects
,
K. J.
William
, ed.,
ASME
,
New York
, pp.
25
40
.
35.
Templin
,
B. C.
,
2014
, “
Towards Modeling the Anisotropic Behavior of Polycrystalline Materials Due to Texture Using a Second Order Structure Tensor
,” Ph.D. dissertation,
Mississippi State University
,
MS
.
36.
Hockett
,
J.
, and
Sherby
,
O.
,
1975
, “
Large Strain Deformation of Polycrystalline Metals at Low Homologous Temperatures
,”
J. Mech. Phys. Solids
,
23
(
2
), pp.
87
98
.
37.
Kroner
,
E.
,
1958
, “
Kontinuumstheorie der versetzungen und eigenspannungen
,”
Ergeb. Angew. Math.
,
5
, pp.
1327
1347
.
38.
deWitt
,
R.
,
1973
, “
Theory of Disclinations IV. Straight Disclinations
,”
Arch. Mech.
,
29
, pp.
633
651
.
39.
Eringen
,
A. C.
, and
Claus
,
W. D.
,
1969
, “A Micromorphic Approach to Dislocation Theory and Its Relation to Several Existing Theories,”
Fundamental Aspects of Dislocation Theory—NBS Special Publication 317
,
U.S. Government Printing Office
,
Gaithersburg, MD
.
40.
Timoshenko
,
S.
,
1959
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
41.
Inglis
,
C. E.
,
1913
, “
Stresses in Plates Due to the Presence of Cracks and Sharp Corners
,”
Trans. Inst. Naval Architects
,
55
, pp.
219
241
.
42.
Kirsch
,
E. G.
,
1898
, “
Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre
,”
Zeitschrift des Vereines deutscher Ingenieure
,
42
, pp.
797
807
.
43.
Adedoyin
,
A. A.
,
2017
, “
Optimized Material Defects Investigation Toolbox
,” Computer software. Ver. 3.5.1.
44.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
J. Eng. Mater. Tech.,
106
(
4
), pp.
326
334
.
45.
Bammann
,
D. J.
, and
Aifantis
,
E. C.
,
1982
, “
On a Proposal for Continuum With Microstructure
,”
Acta Mech.
,
45
(
1–2
), pp.
91
121
.
46.
Efremidis
,
G.
,
Rambert
,
G.
, and
Aifantis
,
E. C.
,
2004
, “
Gradient Elasticity and Size Effects for Pressurized Thick Hollow Cylinder
,”
J. Mech. Behav. Mater.
,
15
(
3
), pp.
169
184
.
47.
Kiang
,
C.-H.
,
Endo
,
M.
,
Ajayan
,
P. M.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
1998
, “
Size Effects in Carbon Nanotubes
,”
Phys. Rev. Lett.,
81
(
1–2
), pp.
1869
.
48.
McLachlan
,
N. W.
,
1941
,
Bessel Functions for Engineers
,
Oxford University Press
,
London
.
49.
Solanki
,
K.
, and
Bammann
,
D. J.
,
2010
, “
A Thermodynamic Framework for a Gradient Theory of Continuum Damage
,”
Acta Mech.,
213
(
1–2
), pp.
271
738
.
50.
Zhao
,
J.
,
2011
, “
A Unifed Theory for Cavity Expansion in Cohesive-Frictional Micromorphic Media
,”
Int. J. Solids Struct.,
48
(
9
), pp.
1370
1381
.
51.
Rice
,
J.
,
1992
, “
Dislocation Nucleation From a Crack Tip: An Analysis Based on the Peierls Concept
,”
J. Mech. Phys. Solids
,
40
(
2
), pp.
239
271
.
52.
Nabarro
,
F. R. N.
,
1947
, “
Dislocation in a Simple Cubic Lattice
,”
Proc. Phys. Soc.,
59
(
2
), pp.
256
272
.
53.
Peierls
,
R. E.
,
1940
, “
The Size of a Dislocation
,”
Proc. Phys. Soc.,
52
(
1
), pp.
34
37
.
54.
Ohr
,
S. M.
,
1985
, “
An Electron Microscope Study of Crack Tip Deformation and Its Impact on the Dislocation Theory of Fracture
,”
Mater. Sci. Eng.
,
72
(
1
), pp.
1
35
.
55.
Bonfoh
,
N.
, and
Carmasol
,
A.
,
2006
, “
Analytical Solutions of Elastic Regions Weakened by Elliptic Crack
,”
Proceedings of the 8th International Mathematica Symposium
,
Avignon, France
,
June 19–23
.
You do not currently have access to this content.