Cobalt-based γ–γ′ superalloys are novel heat-resistant materials suitable for high-temperature applications, such as components of the turbine engine. These alloys exhibit favorable strength and corrosion resistance at high temperatures owing to the γ–γ′ microstructure, analogous to that of Ni-based superalloys. The aim of this paper is to evaluate the oxidation behavior of basic Co-9Al-9W (at%) and new tungsten-free Co-10Al-5Mo-2Nb (at%) alloys at elevated temperatures. The investigation is concerned with thermogravimetric studies in the temperature range of 40–1200 °C. The oxidized surfaces after high temperature oxidation have been characterized using optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction analysis (XRD).

References

References
1.
Eliaz
,
N.
,
Shemesh
,
G.
, and
Latanision
,
R. M.
,
2012
, “
Hot Corrosion in Gas Turbine Components
,”
Eng. Failure Anal.,
9
(
1
), pp.
31
41
.
2.
Giampaolo
,
T.
,
2009
,
Gas Turbine Handbook Principles and Practices
,
4th ed
,
The Fairmont Press, Inc.
,
Lilburn, GA
, p.
35
.
3.
Davis
,
J.R.
,
2000
,
ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys
,
1st ed
,
J. R.
Davis
, ed.,
ASM International
,
Materials Park, OH
, p.
281
.
4.
Gurrappa
,
I.
,
1999
, “
Hot Corrosion Behaviour of CM 247 LC Alloy in Na2SO4 and NaCl Environments
,”
Oxid. Met.
,
51
(
5–6
), pp.
353
382
.
5.
McCreath
,
C. G.
,
1983
, “
Environmental Factors That Determine Hot Corrosion in Marine Gas Turbine Rigs and Engines
,”
Corros. Sci.
,
23
(
9
), pp.
1017
1023
.
6.
Bourhis
,
Y.
, and
John
,
C. St.
,
1975
, “
Na2SO4- and NaCl-Induced Hot Corrosion of Six Nickel-Base Superalloys
,”
Oxid. Met.
,
9
(
6
), pp.
507
528
.
7.
Swadźba
,
L.
,
Moskal
,
G.
,
Mendala
,
B.
, and
Hetmańczyk
,
M.
,
2008
, “
Characterization of Microstructure and Properties of TBC Systems With Gradient of Chemical Composition and Porosity
,”
Arch. Metall. Mater.
,
53
(
3
), pp.
945
954
.
8.
Mobarra
,
R.
,
Jafari
,
A. H.
, and
Karaminezhaad
,
M.
,
2006
, “
Hot Corrosion Behavior of MCrAlY Coatings on IN738LC
,”
Surf. Coat. Technol.
,
201
(
6
), pp.
2202
2207
.
9.
Peters
,
M.
,
Leyens
,
C.
,
Schulz
,
U.
, and
Kaysser
,
W. A.
,
2001
, “
EB-PVD Thermal Barrier Coatings for Aeroengines and Gas Turbines
,”
Adv. Eng. Mater.
,
3
(
4
), pp.
193
204
.
10.
Zupanic
,
F.
,
Boncina
,
T.
,
Krizman
,
A.
, and
Tichelaar
,
F. D.
,
2001
, “
Structure of Continuously Cast Ni Based Superalloy Inconel 713C
,”
J. Alloys Compd.
,
329
(
1–2
), pp.
290
297
.
11.
Lee
,
C. S.
,
1971
, “
Precipitation-Hardening Characteristics of Ternary Cobalt-Aluminum-X Alloys
,” Ph.D. thesis,
The University of Arizona
,
Tucson, AZ
, p.
12
.
12.
Sato
,
J.
,
Omori
,
T.
,
Oikawa
,
K.
,
Ohnuma
,
I.
,
Kainuma
,
R.
, and
Ishida
,
K.
,
2006
, “
Cobalt-Base High-Temperature Alloys
,”
Science
,
312
(
5770
), pp.
90
91
.
13.
Tanaka
,
K.
,
Ohashi
,
T.
,
Kishida
,
K.
, and
Inui
,
H.
,
2007
, “
Single-Crystal Elastic Constants of Co3(Al,W) With the L12 Structure
,”
Appl. Phys. Lett.
,
91
(
18
), p.
181907
.
14.
Zenk
,
C. H.
,
Neumeier
,
S.
,
Stone
,
H. J.
, and
Goken
,
M.
,
2014
, “
Mechanical Properties and Lattice Misfit of γ–γ′ Strengthened Co-Base Superalloys in the Co-W-Al-Ti Quaternary System
,”
Intermetallics
,
55
, pp.
28
39
.
15.
Sims
,
C. T.
,
Stoloff
,
N. S.
, and
Hagel
,
W. C.
,
1987
,
Superalloys II
,
John Wiley & Sons
,
New York
, pp.
135
163
.
16.
Mughrabi
,
H.
,
2014
, “
The Importance of Sign and Magnitude of γ/γ′ Lattice Misfit in Superalloys—With Special Reference to the New γ′-Hardened Cobalt-Base Superalloys
,”
Acta Mater.
81
, pp.
21
29
.
17.
Badawy
,
W. A.
,
Al-Kharafi
,
F. M.
, and
Al-Ajmi
,
J. R.
,
2000
, “
Electrochemical Behaviour of Cobalt in Aqueous Solutions of Different pH
,”
J. Appl. Electrochem.
,
30
(
6
), pp.
693
704
.
18.
Ohtsuka
,
T.
, and
Sato
,
N.
,
1981
, “
Two-Layer Formation of Passivating Films on Cobalt in Neutral Solution
,”
J. Electrochem. Soc.
,
128
(
12
), pp.
2522
2528
.
19.
Iofa
,
Z. A.
,
Batrakov
,
V. V.
, and
Cho-Ngok-Ba
,
1964
, “
Influence of Anion Adsorption on the Action of Inhibitors on the Acid Corrosion of Iron and Cobalt
,”
Electrochim. Acta
,
9
(
12
), pp.
1645
1653
.
20.
Heusler
,
K. E.
,
1966
, “
Passivität des Kobalts in Sauren Lösungen
,”
Corros. Sci.
,
6
(
3–4
), pp.
183
196
.
21.
Bond
,
A. P.
, and
Uhlig
,
H. H.
,
1960
, “
Corrosion Behavior and Passivity of Nickel–Chromium and Cobalt–Chromium Alloys
,”
J. Electrochem. Soc.
,
107
(
6
), pp.
488
493
.
22.
Kocijan
,
A.
,
Milosev
,
I.
, and
Pihlar
,
B.
,
2004
, “
Cobalt-Based Alloys for Orthopaedic Applications Studied by Electrochemical and XPS Analysis
,”
J. Mater. Sci.: Mater. Med.
,
15
(
6
), pp.
634
650
.
23.
Montero-Ocampo
,
C.
, and
Hidalgo Badillo
,
J. A.
,
2008
, “
EIS Study of the Electrochemical Behavior of the Co-Cr-Mo Alloy in Borate Solutions
,”
Electrochem. Soc.
,
11
(
21
), pp.
69
78
.
24.
Mareci
,
D.
,
Sutiman
,
D.
,
Cailean
,
A.
, and
Bolat
,
G.
,
2010
, “
Comparative Corrosion Study of Ag-Pd and Co-Cr Alloys Used in Dental Applications
,”
Bull. Mater. Sci.
,
33
(
4
), pp.
491
500
.
25.
Ooshima
,
M.
,
Tanaka
,
K.
,
Okamoto
,
N. L.
,
Kishida
,
K.
, and
Inui
,
H.
,
2010
, “
Effects of Quaternary Alloying Elements on the γ′ Solvus Temperature of Co-Al-W Based Alloys With fcc/L12 Two-Phase Microstructures
,”
J. Alloys Compd.
,
508
(
1
), pp.
71
78
.
26.
Povstugar
,
I.
,
Choi
,
P. P.
,
Neumeier
,
S.
,
Bauer
,
A.
,
Zenk
,
C. H.
,
Goken
,
M.
, and
Raabe
,
D.
,
2014
, “
Elemental Partitioning and Mechanical Properties of Ti- and Ta-Containing Co–Al–W-Base Superalloys Studied by Atom Probe Tomography and Nanoindentation
,”
Acta Mater.
78
, pp.
78
85
.
27.
Bauer
,
A.
,
Neumeier
,
S.
,
Pyczak
,
F.
, and
Goken
,
M.
,
2010
, “
Microstructure and Creep Strength of Different γ/γ′ Co-Base Superalloy Variants
,”
Scr. Mater.
,
63
(
12
), pp.
1197
1200
.
28.
Cui
,
C.
,
Ping
,
D.
,
Gu
,
Y.
, and
Harada
,
H.
,
2006
, “
A New Co-Base Superalloy Strengthened by γ′ Phase
,”
Mater. Trans.
,
47
(
8
), pp.
2099
2102
.
29.
Bauer
,
A.
,
Neumeier
,
S.
,
Pyczak
,
F.
, and
Goken
,
M.
,
2012
, “
Creep Strength and Microstructure of Polycrystalline γ′-Strengthened Cobalt-Base Superalloys
,”
Superalloys 2012: 12th International Symposium on Superalloy
,
Seven Springs Mountain Resort, PA
,
Sept. 9–13
, p.
702
.
30.
Omori
,
T.
,
Oikawa
,
K.
,
Sato
,
J.
,
Ohnuma
,
I.
,
Kattner
,
U. R.
,
Kainuma
,
R.
, and
Ishida
,
K.
,
2013
, “
Partition Behavior of Alloying Elements and Phase Transformation Temperatures in Co–Al–W-Base Quaternary Systems
,”
Intermetallics
,
32
, pp.
274
283
.
31.
Xue
,
F.
,
Wang
,
M.
, and
Feng
,
Q.
,
2012
, “
Alloying Effects on Heat-Treated Microstructure in Co–Al–W–Base Superalloys at 1300 °C and 900 °C
,”
Superalloys 2012: 12th International Symposium on Superalloys
,
Seven Springs Mountain Resort
,
Sept. 9–13
, pp.
813
821
.
32.
Knop
,
M.
,
Vorontsov
,
A.
,
Hardy
,
M. C.
, and
Dye
,
D.
,
2014
, “
High-Temperature γ (FCC)/γ′ (L12) Co-Al-W Based Superalloys
,”
MATEC Web Conf.
14
, pp.
18003
.
33.
Yan
,
H.-Y.
,
Vorontsov
,
V. A.
, and
Dye
,
D.
,
2014
, “
Alloying Effects in Polycrystalline γ′ Strengthened Co-Al-W Base Alloys
,”
Intermetallics
,
48
, pp.
44
53
.
34.
Feng
,
G.
,
Li
,
H.
,
Li
,
S. S.
, and
Sha
,
J. B.
,
2012
, “
Effect of Mo Additions on Microstructure and Tensile Behavior of a Co–Al–W–Ta–B Alloy at Room Temperature
,”
Scr. Mater.
,
67
(
5
), pp.
499
502
.
35.
Makineni
,
S. K.
,
Nithin
,
B.
, and
Chattopadhyay
,
K.
,
2015
, “
Synthesis of a New Tungsten-Free γ–γ′ Cobalt-Based Superalloy by Tuning Alloying Additions
,”
Acta Mater.
85
, pp.
85
94
.
36.
Xue
,
F.
,
Li
,
Z. Q.
, and
Feng
,
Q.
,
2010
, “
Mo Effect on the Microstructure in Co-Al-W-Based Superalloys
,”
Mater. Sci. Forum
,
654–656
, pp.
420
423
.
37.
Yao
,
Q.
,
Shang
,
S.-L.
,
Hu
,
Y.-J.
,
Wang
,
Y.
,
Wang
,
Y.
,
Zhu
,
Y. H.
, and
Liu
,
Z.-K.
,
2016
, “
First-Principles Investigation of Phase Stability, Elastic and Thermodynamic Properties in L12 Co3(Al, Mo, Nb) Phase
,”
Intermetallics
,
78
, pp.
1
7
.
38.
Makineni
,
S. K.
,
Nithin
,
B.
,
Palanisamy
,
D.
, and
Chattopadhyay
,
K.
,
2016
, “
Phase Evolution and Crystallography of Precipitates During Decomposition of New “Tungsten-Free” Co(Ni)-Mo-Al-Nb γ/γ′ Superalloys at Elevated Temperatures
,”
J. Mater. Sci.
,
51
(
17
), pp.
7843
7860
.
39.
Makineni
,
S. K.
,
Samanta
,
A.
,
Rojhirunsakool
,
T.
,
Alam
,
T.
,
Nithin
,
B.
,
Singh
,
A. K.
,
Banerjee
,
R.
, and
Chattopadhyay
,
K.
,
2015
, “
A New Class of High Strength High Temperature Cobalt Based γ–γ′ Co–Mo–Al Alloys Stabilized With Ta Addition
,”
Acta Mater.
97
, pp.
29
40
.
40.
Makineni
,
S. K.
,
Nithin
,
B.
, and
Chattopadhyay
,
K.
,
2015
, “
A New Tungsten-Free γ–γ′ Co-Al-Mo-Nb Based Superalloy
,”
Scr. Mater.
98
, pp.
36
39
.
41.
Mikuszewski
,
T.
,
Tomaszewska
,
A.
,
Moskal
,
G.
,
Migas
,
D.
, and
Niemiec
,
D.
,
2017
, “
Primary Microstructure Characterization of New Type γ–γ′ Co-Al-W Cobalt-Based Superalloys
,”
Mater. Eng.
38
(
5
), pp.
217
223
.
42.
Tomaszewska
,
A.
, and
Oleksiak
,
B.
,
2018
, “
Microstructural Characteristics of New Type γ-γ′ Co-9Al-9W Cobalt-Based Superalloys in As-Cast State
,”
Metalurgija
,
57
(
1–2
), pp.
91
94
.
You do not currently have access to this content.