The effects of two temper conditions (T4 and T6 heat treatments) upon the stress corrosion cracking (SCC) of AA6061 plates have been investigated in this work. AA6061 alloys were double-side-welded by the tungsten inert gas (TIG) welding method. SCC behavior of both the as-welded and as-received alloys was reported. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to determine the precipitate structure of the thermal-altered zones and the base metal (BM), and also the hardness variations were examined using microhardness testing (Vickers hardness). The small-size precipitate structures in the T6 tempered alloy and the coarser precipitate structures in the T4 tempered alloy were found by microstructural investigations. As a result, T4 temper heat treatment of this alloy considerably reduced its susceptibility to stress corrosion cracks due to relatively coarse and more separate precipitate morphology. In welded specimens, SCC failure occurred in the area between the heat-affected zone (HAZ) and the base metal. Stress corrosion resistance in the fusion zone was strong in both temper conditions. The aim of this work was to obtain the effects of heat treatment and welding on SCC behavior of the age-hardenable aluminum alloy. The authors conclude that a deep insight into the SCC resistance of AA6061 alloy indicates the precipitate particle distributions and they are the key point for AA6061 alloy joints in chloride solution.

References

References
1.
Mrówka-Nowotnik
,
G.
,
2010
, “
Influence of Chemical Composition Variation and Heat Treatment on Microstructure and Mechanical Properties of 6xxx Alloys
,”
Arch. Mater. Sci. Eng.
,
46
(
2
), pp.
98
107
.
2.
Vargel
,
C.
,
2004
,
Corrosion of Aluminium
,
Elsevier
,
France
.
3.
Braun
,
R.
,
1998
, “
Environmentally Assisted, Cracking of Aluminum Alloys in Chloride Solutions
,”
ICAA-6: 6th International Conference on Aluminium Alloys
,
Toyohashi, Japan
,
July 5–10, 1998
, pp.
153
164
.
4.
Raja
,
V. S.
, and
Shoji
,
T.
,
2011
,
Stress Corrosion Cracking: Theory and Practice
,
Elsevier
,
Cambridge, UK
,
307
340
.
5.
Ozturk
,
F.
,
Esener
,
E.
,
Toros
,
S.
, and
Picu
,
C. R.
,
2010
, “
Effects of Aging Parameters on Formability of 6061-O Alloy
,”
Mater. Design
,
31
(
10
), pp.
4847
4852
.
6.
Fu
,
G.
,
Tian
,
F.
, and
Wang
,
H.
,
2006
, “
Studies on Softening of Heat-Affected Zone of Pulsed-Current GMA Welded Al–Zn–Mg Alloy
,”
J. Mater. Process. Technol.
,
180
(
1–3
), pp.
216
220
.
7.
Squillace
,
A.
,
De Fenzo
,
A.
,
Giorleo
,
G.
, and
Bellucci
,
F.
,
2004
, “
A Comparison Between FSW and TIG Welding Techniques: Modifications of Microstructure and Pitting Corrosion Resistance in AA 2024-T3 butt Joints
,”
J. Mater. Process. Technol.
,
152
(
1
), pp.
97
105
.
8.
Lakshminarayanan
,
A. K.
,
Balasubramanian
,
V.
, and
Elangovan
,
K.
,
2009
, “
Effect of Welding Processes on Tensile Properties of AA6061 Aluminium Alloy Joints
,”
J. Manuf. Process
,
40
(
3–4
), pp.
286
296
.
9.
Davis
,
J. R.
,
1999
,
Corrosion of Aluminum and Aluminum Alloys
,
ASM International
, pp.
161
.
10.
Seguin
,
D. J.
,
2013
, “
Intergranular Corrosion and Stress Corrosion Cracking of Extruded AA6005A
,” Ph.D. dissertation,
Michigan Technological University
,
UK
.
11.
Rao
,
A. U.
,
Vasu
,
V.
,
Govindaraju
,
M.
, and
Srinadh
,
K. S.
,
2016
, “
Stress Corrosion Cracking Behaviour of 7xxx Aluminum Alloys: a Literature Review
,”
Trans. Nonferrous Met. Soc. China
,
26
(
6
), pp.
1447
1471
.
12.
Jones
,
R. H.
,
2003
, “
Stress Corrosion Cracking
,”
ASM Handbook
,
S D.
Cramer
, and
B.S.
Covino
Jr.
, eds.,
ASM International
, pp.
346
366
.
13.
Silva
,
G.
,
Rivolta
,
B.
,
Gerosa
,
R.
, and
Derudi
,
U.
,
2013
, “
Study of the SCC Behavior of 7075 Aluminum Alloy After one-step Aging at 163 C
,”
J. Mater. Eng. Perform
,
22
(
1
), pp.
210
214
.
14.
Hatamleh
,
O.
,
Singh
,
P. M.
, and
Garmestani
,
H.
,
2009
, “
Corrosion Susceptibility of Peened Friction Stir Welded 7075 Aluminum Alloy Joints
,”
Corros. Sci.
,
51
(
1
), pp.
135
143
.
15.
Meng
,
C.
,
Zhang
,
D.
,
Zhuang
,
L.
, and
Zhang
,
J.
,
2016
, “
Correlations Between Stress Corrosion Cracking, Grain Boundary Precipitates and Zn Content of Al–Mg–Zn Alloys
,”
J. Alloy. Compd.
,
655
, pp.
178
187
.
16.
Knight
,
S. P.
,
Pohl
,
K.
,
Holroyd
,
N. J. H.
,
Birbilis
,
N.
,
Rometsch
,
P. A.
,
Muddle
,
B. C.
, and
Lynch
,
S. P.
,
2015
, “
Some Effects of Alloy Composition on Stress Corrosion Cracking in Al–Zn–Mg–Cu alloys
,”
Corros. Sci.
,
98
, pp.
50
62
.
17.
Lim
,
S.
,
Kim
,
S.
,
Lee
,
C. G.
, and
Kim
,
S.
,
2005
, “
Stress Corrosion Cracking Behavior of Friction-stir-Welded Al 6061-T651
,”
Metall. Mater. Trans. A
,
36
(
7
), pp.
1977
1980
.
18.
Shankar
,
A. R.
,
Gopalakrishnan
,
G.
,
Balusamy
,
V.
, and
Mudali
,
U. K.
,
2009
, “
Effect of Heat Input on Microstructural Changes and Corrosion Behavior of Commercially Pure Titanium Welds in Nitric Acid Medium
,”
J. Mater. Eng. Perform.
,
18
(
8
), pp.
1116
.
19.
Liu
,
W.
,
Ma
,
J.
,
Atabaki
,
M. M.
,
Pillai
,
R.
,
Kumar
,
B.
,
Vasudevan
,
U.
,
Sreshta
,
H.
, and
Kovacevic
,
R.
,
2015
, “
Hybrid Laser-Arc Welding of 17-4 PH Martensitic Stainless Steel
,”
Lasers Manuf. Mater. Process.
,
2
(
2
), pp.
74
90
.
20.
Ma
,
K.
,
Wen
,
H.
,
Hu
,
T.
,
Topping
,
T. D.
,
Isheim
,
D.
,
Seidman
,
D. N.
, and
Schoenung
,
J. M.
,
2014
, “
Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy
,”
Acta Mater.
,
62
, pp.
141
155
.
21.
Li
,
J. F.
,
Birbilis
,
N.
,
Li
,
C. X.
,
Jia
,
Z. Q.
,
Cai
,
B.
, and
Zheng
,
Z. Q.
,
2009
, “
Influence of Retrogression Temperature and Time on the Mechanical Properties and Exfoliation Corrosion Behavior of Aluminium Alloy AA7150
,”
Mater. Charact.
,
60
(
11
), pp.
1334
1341
.
22.
Adesola
,
A. O.
,
Odeshi
,
A. G.
, and
Lanke
,
U. D.
,
2013
, “
The Effects of Aging Treatment and Strain Rates on Damage Evolution in AA 6061 Aluminum Alloy in Compression
,”
Mater. Design
,
45
, pp.
212
221
.
23.
Tsai
,
T. C.
, and
Chuang
,
T. H.
,
1996
, “
Atmospheric Stress Corrosion Cracking of a Superplastic 7475 Aluminum Alloy
,”
Metall. Mater. Trans. A
,
27
(
9
), pp.
2617
2627
.
24.
Aginagalde
,
A.
,
Gomez
,
X.
,
Galdos
,
L.
, and
García
,
C.
,
2009
, “
Heat Treatment Selection and Forming Strategies for 6082 Aluminum Alloy
,”
ASME J. Eng. Mater. Technol.
,
131
(
4
),
044501
.
25.
Lakshminarayanan
,
A. K.
,
Balasubramanian
,
V.
, and
Elangovan
,
K.
,
2009
, “
Effect of Welding Processes on Tensile Properties of AA6061 Aluminium Alloy Joints
,”
J. Adv. Mech. Des. Syst.
,
40
(
3–4
), pp.
286
296
.
26.
Young
,
G. A.
,
Etien
,
R. A.
,
Hackett
,
M. J.
,
Tucker
,
J. D.
, and
Capobianco
,
T. E.
,
2011
, “
Physical Metallurgy, Weldability, and In-Service Performance of Nickel-chromium Filler Metals Used in Nuclear Power Systems
,”
Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors
,
Springer
,
Cham,
pp.
2431
2441
.
27.
Wang
,
L.
,
Shen
,
J.
, and
Xu
,
N.
,
2011
, “
Effects of TiO2 Coating on the Microstructures and Mechanical Properties of Tungsten Inert Gas Welded AZ31 Magnesium Alloy Joints
,”
Mater. Sci. Eng. A-Struct.
,
528
(
24
), pp.
7276
7284
.
28.
Arivazhagan
,
B.
, and
Vasudevan
,
M.
,
2014
, “
A Comparative Study on the Effect of GTAW Processes on the Microstructure and Mechanical Properties of P91 Steel Weld Joints
,”
J. Manuf. Process
,
16
(
2
), pp.
305
311
.
29.
Hayat
,
F.
,
2012
, “
Effect of Aging Treatment on the Microstructure and Mechanical Properties of the Similar and Dissimilar 6061-T6/7075-T651 RSW Joints
,”
Mater. Sci. Eng. A-Struct.
,
556
, pp.
834
843
.
30.
Temmar
,
M.
,
Hadji
,
M.
, and
Sahraoui
,
T.
,
2011
, “
Effect of Post-Weld Aging Treatment on Mechanical Properties of Tungsten Inert Gas Welded Low Thickness 7075 Aluminium Alloy Joints
,”
Mater. Design
,
32
(
6
), pp.
3532
3536
.
31.
Amuda
,
M. O. H.
, and
Mridha
,
S.
,
2011
, “
An Overview of Sensitization Dynamics in Ferritic Stainless Steel Welds
,”
Int. J. Corros.
,
2011
, 305793, pp.
1
9
.
32.
Rao
,
S. K.
,
Reddy
,
G. M.
,
Rao
,
K. S.
,
Kamaraj
,
M.
, and
Rao
,
K. P.
,
2005
, “
Reasons for Superior Mechanical and Corrosion Properties of 2219 Aluminum Alloy Electron Beam Welds
,”
Mater. Charact.
,
55
(
4–5
), pp.
345
354
.
33.
Wang
,
M.
, and
Hu
,
H.
,
2013
, “
Fusion Welding of Vacuum High Pressure Die Cast Aluminum Alloy A356 and Wrought Alloy 6061
,”
SAE Int. J. Mater. Manuf.
,
6
(
2
), pp.
299
303
.
34.
Tan
,
E.
, and
Ögel
,
B.
,
2007
, “
Influence of Heat Treatment on the Mechanical Properties of AA6066 Alloy
,”
Turkish J. Eng. Environ. Sci.
,
31
(
1
), pp.
53
60
.
35.
Peng
,
D.
,
Shen
,
J.
,
Tang
,
Q.
,
Wu
,
C. P.
, and
Zhou
,
Y. B.
,
2013
, “
Effects of Aging Treatment and Heat Input on the Microstructures and Mechanical Properties of TIG-welded 6061-T6 Alloy Joints
,”
Int. J. Min. Met. Mater.
,
20
(
3
), pp.
259
265
.
36.
Janasekaran
,
S.
,
Tan
,
A. W.
,
Yusof
,
F.
, and
Abdul Shukor
,
M. H.
,
2016
, “
Influence of the Overlapping Factor and Welding Speed on T-Joint Welding of Ti6Al4 V and Inconel 600 Using Low-Power Fiber Laser
,”
Metals-Basel
,
6
(
6
), pp.
134
.
37.
Atabaki
,
M. M.
,
Nikodinovski
,
M.
,
Chenier
,
P.
,
Ma
,
J.
,
Liu
,
W.
, and
Kovacevic
,
R.
,
2014
, “
Experimental and Numerical Investigations of Hybrid Laser arc Welding of Aluminum Alloys in the Thick T-joint Configuration
,”
Opt. Laser Technol.
,
59
, pp.
68
92
.
38.
Frankel
,
G. S.
, and
Xia
,
Z.
,
1999
, “
Localized Corrosion and Stress Corrosion Cracking Resistance of Friction Stir Welded Aluminum Alloy 5454
,”
Corrosion
,
55
(
2
), pp.
139
150
.
39.
Fahimpour
,
V.
,
Sadrnezhaad
,
S. K.
, and
Karimzadeh
,
F.
,
2012
, “
Corrosion Behavior of Aluminum 6061 Alloy Joined by Friction Stir Welding and Gas Tungsten Arc Welding Methods
,”
Mater. Design
,
39
, pp.
329
333
.
40.
Liu
,
L.
, and
Ren
,
D.
,
2011
, “
A Novel Weld-bonding Hybrid Process for Joining Mg Alloy and Al Alloy
,”
Mater. Design
,
32
(
7
), pp.
3730
3735
.
41.
Gracio
,
J. J.
,
Barlat
,
F.
,
Rauch
,
E. F.
,
Jones
,
P. T.
,
Neto
,
V. F.
, and
Lopes
,
A. B.
,
2004
, “
Artificial Aging and Shear Deformation Behaviour of 6022 Aluminium Alloy
,”
Int. J. Plasticity
,
20
(
3
), pp.
427
445
.
42.
Guo
,
W.
,
Crowther
,
D.
,
Francis
,
J. A.
,
Thompson
,
A.
,
Liu
,
Z.
, and
Li
,
L.
,
2015
, “
Microstructure and Mechanical Properties of Laser Welded S960 High Strength Steel
,”
Mater. Design
,
85
, pp.
534
548
.
43.
Borchers
,
T. E.
,
McAllister
,
D. P.
, and
Zhang
,
W.
,
2015
, “
Macroscopic Segregation and Stress Corrosion Cracking in 7xxx Series Aluminum Alloy arc Welds
,”
Metall. Mater. Trans. A
,
46
(
5
), pp.
1827
1833
.
44.
Alil
,
A.
,
Popović
,
M.
,
Radetić
,
T.
,
Zrilić
,
M.
, and
Romhanji
,
E.
,
2015
, “
Influence of Annealing Temperature on the Baking Response and Corrosion Properties of an Al–4.6 wt% Mg alloy with 0.54 wt% Cu
,”
J. Alloy Compd.
,
625
, pp.
76
84
.
45.
Tsuchida
S.
, and
Tanaka
H.
,
1993
, “
Intergranular Corrosion in Cold Rolled AA5182 Aluminum Alloys
,”
Aluminium Alloys for Packaging
,
J. G.
Morris
,
H. D. T
Merchan
,
E. J.
Westerman
, and
P. L.
Morris
, eds,
TMS
,
Warrendale, PA
, pp.
309
322.
46.
Carrol
,
M. C.
,
Gouma
,
P. I.
,
Mills
,
M. J.
,
Daehn
,
G. S.
, and
Dunbar
,
B. R.
,
2000
, “
Effects of Zn Additions on the Grain Boundary Precipitation and Corrosion of Al-5083
,”
Scripta Mater.
,
42
, pp.
335
340
.
47.
Carroll
,
M. C.
,
Gouma
,
P. I.
,
Daehn
,
G. S.
, and
Mills
,
M. J.
,
2001
, “
Effects of Minor Cu Additions on a Zn-Modified Al-5083 Alloy
,”
Mater. Sci. Eng. A
,
319–321
, pp.
425
428
.
48.
Wang
,
S. C.
, and
Starink
,
M. J.
,
2005
, “
Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys
,”
Int. Mater. Rev.
50
(
4
), pp.
193
215
.
49.
Ralston
,
K. D.
,
Birbilis
,
N.
,
Weyland
,
M.
, and
Hutchinson
,
C. R.
,
2010
, “
The Effect of Precipitate Size on the Yield Strength-pitting Corrosion Correlation in Al-Cu-Mg Alloys
,”
Acta Mater.
,
58
(
18
), pp.
5941
5948
.
50.
Lu
,
K.
,
Lu
,
L.
, and
Suresh
,
S.
,
2009
, “
Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale
,”
Science
,
324
(
5925
), pp.
349
352
.
51.
Wang
,
Y.
,
Kannan
,
R.
, and
Li
,
L.
,
2018
, “
Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel
,”
Metall. Mater. Trans. A
,
49
(
4
), pp.
1264
1275
.
52.
Doi
,
M.
,
1996
, “
Elasticity Effects on the Microstructure of Alloys Containing Coherent Precipitates
,”
Prog. Mater. Sci.
,
40
(
2
), pp.
79
180
.
53.
Liao
,
C. M.
,
1993
, “
SCC Behavior of an Al-3.7 wt% Zn-2.5 wt% Mg Alloy Before and After Welding in 3.5% NaCl Solution
,”
Corrosion
,
49
(
1
), pp.
52
59
.
54.
Wang
,
D.
,
Ma
,
Z. Y.
, and
Gao
,
Z. M.
,
2009
, “
Effects of Severe Cold Rolling on Tensile Properties and Stress Corrosion Cracking of 7050 Aluminum Alloy
,”
Mater. Chem. Phys.
,
117
(
1
), pp.
228
233
.
55.
Ahn
,
S.
,
Jeong
,
D.
,
Kwon
,
Y.
,
Goto
,
M.
,
Sung
,
H.
, and
Kim
,
S.
,
2018
, “
Environmental Fatigue Crack Propagation Behavior of β-Annealed Ti-6Al-4 V Alloy in NaCl Solution Under Controlled Potentials
,”
Int. J. Fatigue
,
111
, pp.
186
195
.
56.
Magnin
,
T.
,
Chambreuil
,
A.
, and
Bayle
,
B.
,
1996
, “
The Corrosion-enhanced Plasticity Model for Stress Corrosion Cracking in Ductile fcc Alloys
,”
Acta Mater.
,
44
, pp.
1457
1470
.
57.
Talianker
,
M.
, and
Cina
,
B.
,
1989
, “
Retrogression and Reaging and the Role of Dislocations in the Stress Corrosion of 7000-type Aluminum Alloys
,”
Metall. Trans. A
,
20
(
10
), pp.
2087
2092
.
58.
De Ardo
,
A. J.
, and
Townsend
,
R. D.
,
1970
, “
The Effect of Microstructure on the Stress-corrosion Susceptibility of a High Purity Al−Zn−Mg Alloy in a NaCl Solution
,”
Metall. Trans
,
1
(
9
), pp.
2573
2581
.
59.
Nguyen
,
D.
,
Thompson
,
A. W.
, and
Bernstein
,
I. M.
,
1987
, “
Microstructural Effects on Hydrogen Embrittlement in a High Purity 7075 Aluminum Alloy
,”
Acta Metall. Mater.
,
35
(
10
), pp.
2417
2425
.
60.
Najjar
,
D.
,
Magnin
,
T.
, and
Warner
,
T. J.
,
1997
, “
Influence of Critical Surface Defects and Localized Competition Between Anodic Dissolution and Hydrogen Effects During Stress Corrosion Cracking of a 7050 Aluminium Alloy
,”
Mater. Sci. Eng. A
,
238
, pp.
293
302
.
61.
Park
,
J. K.
, and
Ardell
,
A. J.
,
1984
, “
Effect of Retrogression and Reaging Treatments on the Microstructure of Ai-7075-T651
,”
Metall. Trans. A
,
15A
, pp.
1531
1543
.
62.
Rajan
,
K.
,
Wallace
,
W.
, and
Beddoes
,
J. C.
,
1982
, “
Microstructural Study of a High-Strength Stress-Corrosion Resistant 7075 Aluminium Alloy
,”
Mater. Sci.
,
17
(
10
), pp.
2817
2824
.
63.
Christodoulou
,
L.
, and
Flower
,
H. M.
,
1980
, “
Hydrogen Embrittlement and Trapping in Al6%Zn-3%Mg
,”
Acta Mater.
,
28
, pp.
481
487
.
64.
Lynch
,
S. P.
,
Knight
,
S. P.
,
Birbilis
,
N.
, and
Muddle
,
B. C.
,
2009
, “
Stress-Corrosion Cracking of Al-Zn-Mg-Cu Alloys Effects of Composition and Heat-treatment
,”
Effects of Hydrogen on Materials: Proceedings of the 2008 International Hydrogen Conference
,
Wyoming, USA
,
Sept. 7–10, 2008
.
65.
Cina
,
B.
,
1974
. “
Reducing the Susceptibility of Alloys, Particularly Aluminium Alloys to Stress Corrosion Cracking
,” U.S. Patent No. 3856584 [P], 1974−12−24.
66.
Knight
,
S. P.
,
Birbilis
,
N.
,
Muddle
,
B. C.
,
Trueman
,
A. R.
, and
Lynch
,
S. P.
,
2010
, “
Correlations Between Intergranular Stress Corrosion Cracking, Grain-boundary Microchemistry, and Grain-Boundary Electrochemistry for Al–Zn–Mg–Cu alloys
,”
Corros. Sci.
,
52
(
12
), pp.
4073
4080
.
67.
Holroyd
,
N. J. H.
,
1988
, “
Environment-Induced Cracking of High-Strength Aluminum Alloys
Proceedings of Environment-induced Cracking of Metals
,
R. P.
Gangloff
, and
M. B.
Ives
, eds,
NACE
,
Houston, TX
, pp.
311
345
.
68.
Lu
,
B. T.
,
Chen
,
Z. K.
,
Luo
,
J. L.
,
Patchett
,
B. M.
, and
Xu
,
Z. H.
,
2005
, “
Pitting and Stress Corrosion Cracking Behavior in Welded Austenitic Stainless Steel
,”
Electrochim. Acta
,
50
(
6
), pp.
1391
1403
.
69.
Kannan
,
M. B.
,
Srinivasan
,
P. B.
, and
Raja
,
V. S.
,
2011
, “
Stress Corrosion Cracking (SCC) of Aluminium Alloys
,”
Stress Corrosion Cracking
,
Woodhead Publishing
,
Philadelphia, PA
, pp.
307
340
.
70.
Braun
,
R.
,
2006
, “
Nd:YAG Laser Butt Welding of AA6013 Using Silicon and Magnesium Containing Filler Powders
,”
Mater. Sci. Eng.
,
A426
, pp.
250
.
71.
Rahman
,
A. M.
,
Kumar
,
S.
, and
Gerson
,
A. R.
,
2007
, “
Galvanic Corrosion of Laser Weldments of AA6061 Aluminium Alloy
,”
Corros. Sci.
,
49
(
12
), pp.
4339
4351
.
72.
Xu
,
W.
,
Zhang
,
W.
, and
Wu
,
X.
,
2017
, “
Corrosion Behavior of Top and Bottom Surfaces for Single-Side and Double-side Friction Stir Welded 7085-T7651 Aluminum Alloy Thick Plate Joints
,”
Metall. Mater. Trans. A
,
48
(
3
), pp.
1078
1091
.
73.
Deng
,
Y.
,
Peng
,
B.
,
Xu
,
G. F.
,
Pan
,
Q. L.
,
Ye
,
R.
,
Wang
,
Y.
,
Lu
,
L.
, and
Yin
,
Z. M.
,
2015
, “
Stress Corrosion Cracking of a High-Strength Friction-Stir-Welded Joint of an Al–Zn–Mg–Zr Alloy Containing 0.25 wt. % Sc
,”
Corros. Sci.
,
100
, pp.
57
72
.
You do not currently have access to this content.