Al 7068-T651 alloy is one of the recently developed materials used mostly in the defense industry due to its high strength, toughness, and low weight compared to steels. The aim of this study is to identify the Johnson–Cook (J–C) material model parameters, the accurate Johnson–Cook (J–C) damage parameters, D1, D2, and D3 of the Al 7068-T651 alloy for finite element analysis-based simulation techniques, together with other damage parameters, D4 and D5. In order to determine D1, D2, and D3, tensile tests were conducted on notched and smooth specimens at medium strain rate, 100 s−1, and tests were repeated seven times to ensure the consistency of the results both in the rolling direction and perpendicular to the rolling direction. To determine D4 and D5 further, tensile tests were conducted on specimens at high strain rate (102 s−1) and temperature (300 °C) by means of the Gleeble thermal–mechanical physical simulation system. The final areas of fractured specimens were calculated through optical microscopy. The effects of stress triaxiality factor, rolling direction, strain rate, and temperature on the mechanical properties of the Al 7068-T651 alloy were also investigated. Damage parameters were calculated via the Levenberg–Marquardt optimization method. From all the aforementioned experimental work, J–C material model parameters were determined. In this article, J–C damage model constants, based on maximum and minimum equivalent strain values, were also reported which can be utilized for the simulation of different applications.

References

References
1.
Cole
,
G. S.
, and
Sherman
,
A. M.
,
1995
, “
Light Weight Materials for Automotive Applications
,”
Mater. Charact.
,
35
(
1
), pp.
3
9
.
2.
Cobden
,
R.
, and
Banbury
,
A.
,
1994
, “
Aluminium: Physical Properties, Characteristics and Alloys
,”
Talat Lecture
,
1501
, pp.
19
26
.
3.
Davis
,
J. R.
,
2001
, “
Light Metals and Alloys: Aluminum and Aluminum Alloys
,”
Alloying: Understanding the Basics
,
ASM International
,
Cleveland, OH
, pp.
351
416
.
4.
Davis
,
J. R.
,
1993
,
ASM Specialty Handbook: Aluminum and Aluminum Alloys
,
ASM International
,
Cleveland, OH
.
5.
Dursun
,
T.
, and
Soutis
,
C.
,
2014
, “
Recent Developments in Advanced Aircraft Aluminium Alloys
,”
Mater. Des
,
56
, pp.
862
871
.
6.
Smiths Metal Centers
,
2017
,
7068 Aluminum Alloy Technical Datasheet
,
Smiths Metal Centers
,
London
.
7.
Minnicino
,
M.
,
Gray
,
D.
, and
Moy
,
P.
,
2009
,
Aluminum Alloy 7068 Mechanical Characterization
,
ASM International
,
Cleveland, OH
.
8.
Zhang
,
Y.
,
Outeiro
,
J. C.
, and
Mabrouki
,
T.
,
2015
, “
On the Selection of Johnson–Cook Constitutive Model Parameters for Ti-6Al-4V Using Three Types of Numerical Models of Orthogonal Cutting
,”
Proc. CIRP
,
31
, pp.
112
117
.
9.
Thepsonthi
,
T.
, and
Özel
,
T.
,
2015
, “
3-D Finite Element Process Simulation of Micro-End Milling Ti-6Al-4V Titanium Alloy: Experimental Validations on Chip Flow and Tool Wear
,”
J. Mater. Process. Technol.
,
221
, pp.
128
145
.
10.
Onal
,
O.
,
Bal
,
B.
,
Canadinc
,
D.
, and
Akdari
,
E.
,
2015
, “
Experimental and Numerical Evaluation of Thickness Reduction in Steel Plate Heat Exchangers
,”
ASME J. Eng. Mater. Technol.
,
137
(
4
), p.
041001
.
11.
Onal
,
O.
,
Bal
,
B.
,
Toker
,
S. M.
,
Mirzajanzadeh
,
M.
,
Canadinc
,
D.
, and
Maier
,
H. J.
,
2014
, “
Microstructure-Based Modeling of the Impact Response of a Biomedical Niobium–Zirconium Alloy
,”
J. Mater. Res.
,
29
(
10
), pp.
1123
1134
.
12.
Valoppi
,
B.
,
Bruschi
,
S.
,
Ghiotti
,
A.
, and
Shivpuri
,
R.
,
2017
, “
Johnson–Cook Based Criterion Incorporating Stress Triaxiality and Deviatoric Effect for Predicting Elevated Temperature Ductility of Titanium Alloy Sheets
,”
Int. J. Mech. Sci.
,
123
, pp.
94
105
.
13.
Liu
,
R.
,
Melkote
,
S.
,
Pucha
,
R.
,
Morehouse
,
J.
,
Man
,
X.
, and
Marusich
,
T.
,
2013
, “
An Enhanced Constitutive Material Model for Machining of Ti-6Al-4V Alloy
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2238
2246
.
14.
Chen
,
G.
,
Ren
,
C.
,
Qin
,
X.
, and
Li
,
J.
,
2015
, “
Temperature Dependent Work Hardening in Ti–6Al–4V Alloy Over Large Temperature and Strain Rate Ranges: Experiments and Constitutive Modeling
,”
Mater. Des.
,
83
, pp.
598
610
.
15.
Brar
,
N. S.
, and
Joshi
,
V. S.
,
2012
, “
Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys
,”
AIP Conf. Proc.
,
1426
(
1
), pp.
72
75
.
16.
Tan
,
J. Q.
,
Zhan
,
M.
,
Liu
,
S.
,
Huang
,
T.
,
Guo
,
J.
, and
Yang
,
H.
,
2015
, “
A Modified Johnson–Cook Model for Tensile Flow Behaviors of 7050-T7451 Aluminum Alloy at High Strain Rates
,”
Mater. Sci. Eng. A
,
631
, pp.
214
219
.
17.
Zhang
,
D. N.
,
Shangguan
,
Q. Q.
,
Xie
,
C. J.
, and
Liu
,
F.
,
2015
, “
A Modified Johnson–Cook Model of Dynamic Tensile Behaviors for 7075-T6 Aluminum Alloy
,”
J. Alloys Compd.
,
619
, pp.
186
194
.
18.
Brar
,
N. S.
,
Joshi
,
V. S.
, and
Harris
,
B. W.
,
2009
, “
Constitutive Model Constants for Al7075-T651 and Al7075-T6
,”
AIP Conf. Proc.
,
1195
(
1
), pp.
945
948
.
19.
Moré
,
J. J.
,
1978
,
The Levenberg-Marquardt Algorithm: Implementation and Theory
,
Springer
,
Berlin/Heidelberg
.
20.
Gaidhane
,
V. H.
,
Hote
,
Y. V.
, and
Singh
,
V.
,
2012
, “
Nonrigid Image Registration Using Efficient Similarity Measure and Levenberg-Marquardt Optimization
,”
Biomed. Eng. Lett.
,
2
(
2
), pp.
118
123
.
21.
Vening Meinesz
,
F. A.
,
1956
, “
Elasticity and Plasticity
,”
Appl. Sci. Res. Sect. A
,
6
(
2–3
), pp.
205
225
.
22.
Bobbili
,
R.
,
Paman
,
A.
, and
Madhu
,
V.
,
2016
, “
High Strain Rate Tensile Behavior of Al–4.8Cu–1.2Mg Alloy
,”
Mater. Sci. Eng. A
,
651
, pp.
753
762
.
23.
Algarni
,
M.
,
Bai
,
Y.
, and
Choi
,
Y.
,
2015
, “
A Study of Inconel 718 Dependency on Stress Triaxiality and Lode Angle in Plastic Deformation and Ductile Fracture
,”
Eng. Fract. Mech.
,
147
, pp.
140
157
.
24.
Keshavarz
,
A.
,
Ghajar
,
R.
, and
Mirone
,
G.
,
2014
, “
A New Experimental Failure Model Based on Triaxiality Factor and Lode Angle for X-100 Pipeline Steel
,”
Int. J. Mech. Sci.
,
80
, pp.
175
182
.
25.
Bridgman
,
P. W.
,
1952
,
Studies in Large Flow and Fracture
,
McGraw-Hill
,
New York
.
26.
Bao
,
Y.
,
2003
, “
Prediction of Ductile Crack Formation in Uncracked Bodies
,” Ph.d thesis,
Massachusetts Institute of Technology
,
Cambridge
, pp.
252
.
27.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.
28.
Bai
,
Y.
,
Teng
,
X.
, and
Wierzbicki
,
T.
,
2009
, “
On the Application of Stress Triaxiality Formula for Plane Strain Fracture Testing
,”
ASME J. Eng. Mater. Technol.
,
131
(
2
), p.
021002
.
29.
Neimitz
,
A.
,
Galkiewicz
,
J.
,
Lipiec
,
S.
, and
Dzioba
,
I.
,
2018
, “
Estimation of the Onset of Crack Growth in Ductile Materials
,”
Materials
,
11
(
10
),
2026
.
30.
Senthil
,
K.
,
Iqbal
,
M. A.
,
Chandel
,
P. S.
, and
Gupta
,
N.
,
2017
, “
Study of the Constitutive Behavior of 7075-T651 Aluminum Alloy
,”
Int. J. Impact Eng.
,
108
, pp.
171
190
.
31.
Mirzajanzadeh
,
M.
, and
Canadinc
,
D.
,
2016
, “
A Microstructure-Sensitive Model for Simulating the Impact Response of an High-Manganese Austenitic Steel
,”
ASME J. Eng. Mater. Technol.
,
138
(
4
), p.
041004
.
32.
Majzoobi
,
G. H.
, and
Dehgolan
,
F. R.
,
2011
, “
Determination of the Constants of Damage Models
,”
Procedia Eng.
,
10
, pp.
764
773
.
33.
Hörnqvista
,
M.
, and
Karlssonb
,
B.
,
2006
, “
Temperature and Strain Rate Effects on the Dynamic Strain Ageing of Aluminium Alloy AA7030
,”
Mater. Sci. Forum.
,
519–521
, pp.
883
888
.
34.
Li
,
D.
, and
Ghosh
,
A.
,
2003
, “
Tensile Deformation Behavior of Aluminum Alloys at Warm Forming Temperatures
,”
Mater. Sci. Eng. A
,
352
(
1–2
), pp.
279
286
.
35.
Lee
,
W. S.
,
Sue
,
W. C.
,
Lin
,
C. F.
, and
Wu
,
C. J.
,
2000
, “
Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy
,”
J. Mater. Process. Technol.
,
100
(
1
), pp.
116
122
.
36.
Onal
,
O.
,
Ozmenci
,
C.
, and
Canadinc
,
D.
,
2014
, “
Multi-Scale Modeling of the Impact Response of a Strain-Rate Sensitive High-Manganese Austenitic Steel
,”
Front. Mater.
,
1
, pp.
1
12
.
37.
Bal
,
B.
,
Gumus
,
B.
, and
Canadinc
,
D.
,
2016
, “
Incorporation of Dynamic Strain Aging Into a Viscoplastic Self-Consistent Model for Predicting the Negative Strain Rate Sensitivity of Hadfield Steel
,”
ASME J. Eng. Mater. Technol.
,
138
(
3
), p.
031012
.
38.
Canadinc
,
D.
,
Efstathiou
,
C.
, and
Sehitoglu
,
H.
,
2008
, “
On the Negative Strain Rate Sensitivity of Hadfield Steel
,”
Scr. Mater.
,
59
(
10
), pp.
1103
1106
.
39.
Chmelík
,
F.
,
Klose
,
F. B.
,
Dierke
,
H.
,
Šachl
,
J.
,
Neuhäuser
,
H.
, and
Lukáč
,
P.
,
2007
, “
Investigating the Portevin-Le ChâTelier Effect in Strain Rate and Stress Rate Controlled Tests by the Acoustic Emission and Laser Extensometry Techniques
,”
Mater. Sci. Eng. A
,
462
, pp.
53
60
.
40.
Chen
,
L.
,
Kim
,
H.-S.
,
Kim
,
S.-K.
, and
De Cooman
,
B. C.
,
2007
, “
Localized Deformation Due to Portevin–LeChatelier Effect in 18Mn–0.6C TWIP Austenitic Steel
,”
ISIJ Int.
,
47
(
12
), pp.
1804
1812
.
41.
Collinson
,
M.
,
2014
, “
On the Characterisation of Shock-Induced Sliding Along Multi-Material Interfaces
,” Ph.D thesis,
Imperial College London
,
London
.
You do not currently have access to this content.