It has been observed that tension twins (TTs) are triggered in rolled polycrystalline magnesium alloys under tensile loading applied along the rolling direction (RD) or the transverse direction. This is surprising because these alloys have a near-basal texture, and TTs would therefore cause extension (instead of contraction) along the normal direction. In this work, the origin of these anomalous TTs is first examined by performing crystal plasticity-based finite element simulations using model textures, wherein the c-axis in one grain is systematically tilted toward the loading direction (RD), with the other grains maintained in ideal basal orientation. It is shown that strong basal slip is triggered in the former, which through its effect on the local stress distribution plays a catalytic role in activating TTs. The above behavior is also observed in a simulation performed with an actual texture pertaining to a rolled AZ31 Mg alloy. Most importantly, when basal slip is suppressed, evolution of TTs is found to be very much retarded. The present results corroborate well with experimental observations.

References

References
1.
Blawert
,
C.
,
Hort
,
N.
, and
Kainer
,
K.
,
2004
, “
Automotive Applications of Magnesium and Its Alloys
,”
Trans. Indian Inst. Met.
,
57
, pp.
397
408
.
2.
Friedrich
,
H.
, and
Schumann
,
S.
,
2001
, “
Research for a New Age of Magnesium in the Automotive Industry
,”
J. Mater. Process. Technol.
,
117
, pp.
276
281
.
3.
Barnett
,
M. R.
,
2007
, “
Twinning and the Ductility of Magnesium Alloys Part I : Tension Twins
,”
Mater. Sci. Eng. A
,
464
, pp.
1
7
.
4.
Kondori
,
B.
, and
Benzerga
,
A. A.
,
2014
, “
Effect of Stress Triaxiality on the Flow and Fracture of Mg Alloy AZ31
,”
Metall. Mater. Trans. A
,
45
, pp.
3292
3307
.
5.
Somekawa
,
H.
,
Nakajima
,
K.
,
Singh
,
A.
, and
Mukai
,
T.
,
2010
, “
Ductile Fracture Mechanism in Fine-Grained Magnesium Alloy
,”
Philos. Mag. Lett.
,
90
, pp.
831
839
.
6.
Kelley
,
E. W.
, and
Hosford
,
W. F.
,
1968
, “
Plane-Strain Compression of Magnesium and Magnesium Alloy Crystals.
,”
Trans. Met. Soc. AIME
,
242
, pp.
5
13
.
7.
Barnett
,
M. R.
,
2007
, “
Twinning and the Ductility of Magnesium Alloys Part II : Contraction Twins
,”
Mater. Sci. Eng. A
,
464
, pp.
8
16
.
8.
Choi
,
S.-H.
,
Kim
,
D.
,
Lee
,
H.
, and
Shin
,
E.
,
2010
, “
Simulation of Texture Evolution and Macroscopic Properties in Mg Alloys Using the Crystal Plasticity Finite Element Method
,”
Mater. Sci. Eng. A
,
527
, pp.
1151
1159
.
9.
Selvarajou
,
B.
,
Joshi
,
S. P.
, and
Benzerga
,
A. A.
,
2017
, “
Three Dimensional Simulations of Texture and Triaxiality Effects on the Plasticity of Magnesium Alloys
,”
Acta Mater.
,
127
, pp.
54
72
.
10.
Naveen Kumar
,
N.
,
2012
, “
Deformation and Fracture Behaviour of Magnesium Alloy AZ31
,” ME thesis,
Indian Institute of Science
,
Bangalore
.
11.
Knezevic
,
M.
,
Levinson
,
A.
,
Harris
,
R.
,
Mishra
,
R. K.
,
Doherty
,
R. D.
, and
Kalidindi
,
S. R.
,
2010
, “
Deformation Twinning in AZ31: Influence on Strain Hardening and Texture Evolution
,”
Acta Mater.
,
58
, pp.
6230
6242
.
12.
Koike
,
J.
,
2005
, “
Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature
,”
Metall. Mater. Trans. A
,
36
, pp.
1689
1696
.
13.
Ando
,
D.
,
Koike
,
J.
, and
Sutou
,
Y.
,
2010
, “
Relationship Between Deformation Twinning and Surface Step Formation in AZ31 Magnesium Alloys
,”
Acta Mater.
58
, pp.
4316
4324
.
14.
Kang
,
J.
,
Wilkinson
,
D. S.
,
Mishra
,
R. K.
,
Embury
,
J. D.
,
Essadiqi
,
E.
, and
Javaid
,
A.
,
2013
, “
Microstructural Aspects of Damage and Fracture in AZ31 Sheet Materials
,”
J. Mater. Eng. Perform.
,
22
, pp.
1386
1395
.
15.
Koike
,
J.
,
Sato
,
Y.
, and
Ando
,
D.
,
2008
, “
Origin of the Anomalous {101¯2} Twinning During Tensile Deformation of Mg Alloy Sheet
,”
Mater. Trans.
,
49
, pp.
2792
2800
.
16.
Nave
,
M. D.
, and
Barnett
,
M. R.
,
2004
, “
Microstructures and Textures of Pure Magnesium Deformed in Plane-Strain Compression
,”
Scr. Mater.
,
51
, pp.
881
885
.
17.
Prasad
,
N. S.
,
Narasimhan
,
R.
, and
Suwas
,
S.
,
2015
, “
Fracture Behavior of Magnesium Alloys—Role of Tensile Twinning
,”
Acta Mater.
,
94
, pp.
281
293
.
18.
Prasad
,
N. S.
,
Narasimhan
,
R.
, and
Suwas
,
S.
,
2018
, “
Effect of Notch Acuity on the Fracture Behavior of AZ31 Mg Alloy
,”
Eng. Fract. Mech.
,
187
, pp.
241
261
.
19.
Meyers
,
M. A.
,
Vohringer
,
O.
, and
Lubarda
,
V. A.
,
2001
, “
The Onset of Twinning in Metals: A Constitutive Description
,”
Acta Metall.
,
49
, pp.
4025
4039
.
20.
Jain
,
A.
,
Duygulu
,
O.
,
Brown
,
D. W.
,
Tom
,
C. N.
, and
Agnew
,
S. R.
,
2008
, “
Grain Size Effects on the Tensile Properties and Deformation Mechanisms of a Magnesium Alloy, AZ31B, Sheet
,”
Mater. Sci. Eng. A
,
486
, pp.
545
555
.
21.
Hong
,
S.-G.
,
Park
,
S. H.
, and
Lee
,
C. S.
,
2010
, “
Role of {1012} Twinning Characteristics in the Deformation Behavior of a Polycrystalline Magnesium Alloy
,”
Acta Mater.
,
58
, pp.
5873
5885
.
22.
Liu
,
G.
,
Xin
,
R.
,
Shu
,
X.
,
Wang
,
C.
, and
Liu
,
Q.
,
2016
, “
The Mechanism of Twinning Activation and Variant Selection in Magnesium Alloys Dominated by Slip Deformation
,”
J. Alloys Compd.
,
687
, pp.
352
359
.
23.
Barnett
,
M. R.
,
Ghaderi
,
A.
,
Quinta
,
J.
, and
Robson
,
J. D.
,
2014
, “
Influence of Orientation on Twin Nucleation and Growth at Low Strains in a Magnesium Alloy
,”
Acta Mater.
,
80
, pp.
380
391
.
24.
Roters
,
F.
,
Eisenlohr
,
P.
,
Hantcherli
,
L.
,
Tjahjanto
,
D. D.
,
Bieler
,
T. R.
, and
Raabe
,
D.
,
2010
, “
Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications
,”
Acta Mater.
,
58
, pp.
1152
1211
.
25.
Abdolvand
,
H.
, and
Daymond
,
M. R.
,
2012
, “
Internal Strain and Texture Development During Twinning: Comparing Neutron Diffraction Measurements With Crystal Plasticity Finite-Element Approaches
,”
Acta Mater.
,
60
, pp.
2240
2248
.
26.
Barnett
,
M. R.
,
Stanford
,
N.
,
Ghaderi
,
A.
, and
Siska
,
F.
,
2013
, “
Plastic Relaxation of the Internal Stress Induced by Twinning
,”
Acta Mater.
,
61
, pp.
7859
7867
.
27.
Niezgoda
,
S. R.
,
Beyerlein
,
I. J.
,
Kanjarla
,
A. K.
, and
Tomé
,
C. N.
,
2013
, “
Introducing Grain Boundary Influenced Stochastic Effects Into Constitutive Models: Application to Twin Nucleation in Hexagonal Close-Packed Metals
,”
J. Met.
,
65
, pp.
419
430
.
28.
Guo
,
Y.
,
Abdolvand
,
H.
,
Britton
,
T. B.
, and
Wilkinson
,
A. J.
,
2017
, “
Growth of {1122} Twins in Titanium: A Combined Experimental and Modelling Investigation of the Local State of Deformation
,”
Acta Mater.
,
126
, pp.
221
235
.
29.
Asaro
,
R. J.
,
1983
, “
Micromechanics of Crystals and Polycrystals
,”
Adv. Appl. Mech.
23
, pp.
1
115
.
30.
Kalidindi
,
S. R.
,
1998
, “
Incorporation of Deformation Twinning in Crystal Plasticity Models
,”
J. Mech. Phys. Solids
,
46
, pp.
267
290
.
31.
Zhang
,
J.
, and
Joshi
,
S. P.
,
2012
, “
Phenomenological Crystal Plasticity Modeling and Detailed Micromechanical Investigations of Pure Magnesium
,”
J. Mech. Phys. Solids
,
60
, pp.
945
972
.
32.
Kaushik
,
V.
,
Narasimhan
,
R.
, and
Mishra
,
R. K.
,
2014
, “
Finite Element Simulations of Notch Tip Fields in Magnesium Single Crystals
,”
Int. J. Fract.
,
89
, pp.
195
215
.
33.
Clayton
,
J.
, and
Knapp
,
J.
,
2011
, “
A Phase-Field Model of Deformation Twinning: Nonlinear Theory and Numerical Simulations
,”
Physica D
,
240
, pp.
841
858
.
34.
Graff
,
S.
,
Brocks
,
W.
, and
Steglich
,
D.
,
2007
, “
Yielding of Magnesium: From Single to Polycrystalline Aggregates
,”
Int. J. Plast.
,
23
, pp.
1957
1978
.
35.
Homayonifar
,
M.
,
Steglich
,
D.
, and
Brocks
,
W.
,
2009
, “
Modelling of Plastic Deformation in Magnesium
,”
Int. J. Mater. Form.
2
, pp.
45
58
.
36.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
Solid Mechanics
,
5th ed.
(
The Finite Element Method
), Vol.
2
,
Butterworth-Heinemann
,
London
.
37.
Peirce
,
D.
,
Shih
,
C. F.
, and
Needleman
,
A.
,
1984
, “
A Tangent Modulus Method for Rate Dependent Solids
,”
Comput. Struct.
,
18
, pp.
875
887
.
38.
Kaushik
,
V.
,
2013
, “
Experimental and Numerical Investigation of Mode I Fracture Behavior in Magnesium Single Crystals
,” MSc thesis,
Indian Institute of Science
,
Bangalore
.
39.
Moran
,
B.
,
Ortiz
,
M.
, and
Shih
,
C. F.
,
1990
, “
Formulation of Implicit Finite Element Methods for Multiplicative Finite Deformation Plasticity
,”
Int. J. Numer. Methods Eng.
,
29
, pp.
483
514
.
40.
Haque
,
M. A.
, and
Saif
,
M. T. A.
,
2002
, “
In-Situ Tensile Testing of Nano-Scale Specimens in SEM and TEM
,”
Exp. Mech.
,
42
, pp.
123
128
.
41.
Wang
,
Y. M.
,
Wang
,
K.
,
Pan
,
D.
,
Lu
,
K.
,
Hemker
,
K. J.
, and
Ma
,
E.
,
2003
, “
Microsample Tensile Testing of Nanocrystalline Copper
,”
Scr. Mater.
,
48
, pp.
1581
1586
.
42.
Tan
,
E. P. S.
, and
Lim
,
C. T.
,
2004
, “
Novel Approach to Tensile Testing of Micro- and Nanoscale Fibers
,”
Rev. Sci. Instrum.
,
75
, pp.
2581
2585
.
43.
Kaushik
,
V.
,
Narasimhan
,
R.
, and
Mishra
,
R. K.
,
2014
, “
Experimental Study of Fracture Behavior of Magnesium Single Crystals
,”
Mater. Sci. Eng. A
,
590
, pp.
174
185
.
44.
Staroselsky
,
A.
, and
Anand
,
L.
,
2003
, “
A Constitutive Model for HCP Materials Deforming by Slip and Twinning: Application to Magnesium Alloy AZ31B
,”
Int. J. Plast.
,
19
, pp.
1843
1864
.
45.
Koike
,
J.
,
Ohyama
,
R.
,
Kobayashi
,
T.
,
Suzuki
,
M.
, and
Maruyama
,
K.
,
2003
, “
Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K
,”
Mater. Trans.
,
44
, pp.
445
451
.
46.
Bunge
,
H.
,
1982
,
Texture Analysis in Materials Science: Mathematical Methods
,
2nd ed.
,
Butterworths
,
London
.
47.
Hosford
,
W.
,
2010
,
Mechanical Behavior of Materials
,
2nd ed.
,
Cambridge University
,
Cambridge
.
48.
Peirce
,
D.
,
Asaro
,
R. J.
, and
Needleman
,
A.
,
1983
, “
Material Rate Dependence and Localized Deformation in Crystalline Solids
,”
Acta Metall.
,
31
, pp.
1951
1976
.
You do not currently have access to this content.