Abstract

In this paper, the finite strain viscoelastic constitutive model for particulate composite solid propellants is proposed considering strain rate, large deformation/large strain, thermorheological behavior, stress softening due to microstructural damage, compressibility, and chemical age hardening. The compressible Mooney–Rivlin hyperelastic strain energy density function is used along with the standard model of viscoelasticity. To model the compressibility, the dilatational strain energy is taken as the hyperbolic function of the determinant of deformation gradient. The stress-softening phenomenon during cyclic loading (Mullin's effect) due to microstructural damage is described by an exponential function of the current magnitude of intensity of strain and its previous maximum value. The variation of material properties with time are studied using the isothermal accelerated aging technique through simulation and experimental investigation. The comparison of predictions based on the proposed model with the uniaxial experimental data demonstrates that the proposed model successfully captures the observed behavior of the solid propellants.

References

1.
Swanson
,
S. R.
, and
Christensen
,
L. W.
,
1983
, “
A Constitutive Formulation for High-Elongation Propellants
,”
J. Spacecraft Rockets
,
20
(
6
), pp.
559
566
.
2.
Simo
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.
3.
Holzapfel
,
G. A.
,
1996
, “
On Large Strain Viscoelasticity: Continuum Formulation and Finite Element Applications to Elastomeric Structures
,”
Int. J. Numer. Meth. Eng.
,
39
(
22
), pp.
3903
39
.
4.
Schapery
,
R. A.
,
1986
, “
A Micromechanical Model for Nonlinear Viscoelastic Behavior of Particle-Reinforced Rubber With Distributed Damage
,”
Eng. Fract. Mech.
,
25
(
5/6
), pp.
845
867
.
5.
Schapery
,
R. A.
,
1990
, “
A Theory of Mechanical Behavior of Elastic Media With Growing Damage and Other Changes in Structure
,”
J. Mech. Phys. Solids
,
38
(
2
), pp.
215
253
.
6.
Ozupek
,
S.
, and
Becker
,
E. B.
,
1992
, “
Constitutive Modeling of High-Elongation Solid Propellants
,”
ASME J. Eng. Mater. Technol.
,
114
(
1
), pp.
111
115
.
7.
Ozupek
,
S.
, and
Becker
,
E. B.
,
1997
, “
Constitutive Equations for Solid Propellants
,”
ASME J. Eng. Mater. Technol.
,
119
(
2
), pp.
125
132
.
8.
Park
,
S. W.
, and
Schapery
,
R. A.
,
1997
, “
A Viscoelastic Constitutive Model for Particulate Composites With Growing Damage
,”
Int. J. Solids Struct.
,
34
(
8
), pp.
931
947
.
9.
Jung
,
G. D.
, and
Youn
,
S. K.
,
1999
, “
A Nonlinear Viscoelastic Constitutive Model of Solid Propellant
,”
Int. J. Solids Struct.
,
36
(
25
), pp.
3755
3777
.
10.
Jung
,
G. D.
,
Youn
,
S. K.
, and
Kim
,
B. K.
,
2000
, “
A Three-Dimensional Nonlinear Viscoelastic Constitutive Model of Solid Propellant
,”
Int. J. Solids Struct.
,
37
(
34
), pp.
4715
4732
.
11.
Ho
,
S. Y.
,
2002
, “
High Strain-Rate Constitutive Models for Solid Rocket Propellants
,”
J. Propul. Power
,
18
(
5
), pp.
1106
1111
.
12.
Feng
,
G. F.
,
Peng
,
W.
, and
Zhang
,
Y. T.
(
2011
).
A Micromechanical Damage Constitutive Model for Solid Propellant
.
The Second International Conference on Mechanical Automation and Control Engineering
,
Hohhot, China
,
July 15–17
.
13.
Xu
,
F.
,
Safronis
,
P.
,
Aravas
,
N.
, and
Meyer
,
S.
,
2007
, “
Constitutive Modeling of Porous Viscoelastic Materials
,”
Eur. J. Mech. A Solids
,
26
(
6
), pp.
936
955
.
14.
Xu
,
F.
,
Aravas
,
N.
, and
Safronis
,
P.
,
2008
, “
Constitutive Modeling of Solid Propellant Materials With Evolving Microstructural Damage
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
2050
2073
.
15.
Yildirim
,
H. C.
, and
Ozupek
,
S.
,
2011
, “
Structural Assessment of a Solid Propellant Rocket Motor: Effects of Aging and Damage
,”
Aerosp. Sci. Technol.
,
15
(
8
), pp.
635
641
.
16.
Deng
,
B.
,
Xie
,
Y.
, and
Tang
,
G. J.
,
2014
, “
Three Dimensional Structural Analyses Approach for Ageing Composite Solid Propellant Grain
,”
Propell. Explos. Pyro.
,
39
(
1
), pp.
117
124
.
17.
Wang
,
Z.
,
Qiang
,
H.
,
Wang
,
G.
, and
Huang
,
Q.
,
2015
, “
Tensile Mechanical Properties and Constitutive Model for HTPB Propellant at Low Temperature and High Strain Rate
,”
J. Appl. Polym. Sci.
,
132
(
19
), pp.
42104
42113
.
18.
Yun
,
K.-S.
,
Park
,
J.-B.
,
Jung
,
G.-D.
, and
Youn
,
S.-K.
,
2016
, “
Viscoelastic Constitutive Modeling of Solid Propellant With Damage
,”
Int. J. Solids Struct.
,
80
(
1
), pp.
118
127
.
19.
Tunc
,
B.
, and
Ozupek
,
S.
,
2017
, “
Constitutive Modeling of Solid Propellants for Three Dimensional Nonlinear Finite Element Analysis
,”
Aerosp. Sci. Technol.
,
69
(
2
), pp.
290
297
.
20.
Kumar
,
N.
,
Patel
,
B. P.
,
Rao
,
V. V.
, and
Subhaschandran
,
B. S.
,
2018
, “
Hyperviscoelastic Constitutive Modelling of Solid Propellant With Damage and Compressibility
,”
Propell. Explos. Pyro.
,
43
(
4
), pp.
461
471
.
21.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
.
22.
Naumann
,
C.
, and
Ihlemann
,
J.
,
2015
, “
On the Thermodynamics of Pseudo-Elastic Material Models to Reproduce the Mullins Effect
,”
Int. J. Solids Struct.
,
69–70
(
1
), pp.
360
369
.
23.
Bischoff
,
J. E.
,
Arruda
,
M. E.
, and
Grosh
,
K.
,
2001
, “
A New Constitutive Model for the Compressibility of Elastomers at Finite Deformations
,”
Rubber Chem. Technol.
,
74
(
4
), pp.
541
559
.
24.
Nowak
,
Z.
,
2008
, “
Constitutive Modelling and Parameters Identification for Rubber Like Materials
,”
Eng. Trans.
,
56
(
2
), pp.
117
156
25.
Heller
,
R. A.
, and
Singh
,
M. P.
,
1983
, “
Thermal Storage Life of Solid Propellant Motors
,”
J. Spacecraft Rockets
,
20
(
2
), pp.
144
149
.
26.
Layton
,
L. H.
,
1975
, “
Chemical Ageing Studies on AN HTPB Propellants
,”
Final Tech. Report, AFRPL-TH-75-13
.
You do not currently have access to this content.