Johnson–Cook (JC) strength and failure models have been widely used in finite element analysis (FEA) to solve a variety of thermo-mechanical problems. There are many techniques to determine the required JC parameters; however, a best practice to obtain the most reliable JC parameters has not yet been proposed. In this paper, a genetic-algorithm-based optimization strategy is proposed to calibrate the JC strength and failure model parameters of AISI/SAE 1018 steel. Experimental data were obtained from tensile tests performed for different specimen geometries at varying strain rates and temperatures. FEA was performed for each tensile test. A genetic algorithm was used to determine the optimum JC parameters that best fit the experimental force-displacement data. Calibrated JC parameters were implemented in FEA to simulate the impact tests of standard V-notch Charpy bars to verify the damage mechanism in the material. Considering good agreement of the experimental and FEA results, the current strategy is suggested for calibration proposes in other kind of materials in which plastic behavior could be represented by the JC strength and failure models.

References

References
1.
Langrand
,
B.
,
Geoffroy
,
P.
,
Petitniot
,
J. L.
,
Fabis
,
J.
,
Markiewicz
,
E.
, and
Drazetic
,
P.
,
1999
, “
Identification Technique of Constitutive Model Parameters for Crashworthiness Modelling
,”
Aerosp. Sci. Technol.
,
3
(4), pp.
215
27
.
2.
Wang
,
X.
,
Chandrashekhara
,
K.
,
Rummel
,
S. A.
,
Lekakh
,
S.
,
Van Aken
,
D. C.
, and
O'Malley
,
R. J.
,
2017
, “
Modeling of Mass Flow Behavior of Hot Rolled Low Alloy Steel Based on Combined Johnson-Cook and Zerilli-Armstrong Model
,”
J. Mater. Sci.
,
52
(
5
), pp.
2800
2815
.
3.
Laakso
,
V. S.
, and
Niemi
,
E.
,
2017
, “
Using FEM Simulations of Cutting for Evaluating the Performance of Different Johnson Cook Parameter Sets Acquired With Inverse Methods
,”
Rob. Comput. Integr. Manuf.
,
47
, pp.
95
101
.
4.
Milani
,
A. S.
,
Dabboussi
,
W.
,
Nemes
,
J. A.
, and
Abeyaratne
,
R. C.
,
2009
, “
An Improved Multi-Objective Identification of Johnson-Cook Material Parameters
,”
Int. J. Impact Eng.
,
36
(
2
), pp.
294
302
.
5.
Johnson
,
G. R.
,
1980
, “
Materials Characterization for Computations Involving Severe Dynamic Loading
,”
Army Symposium on Solid Mechanics
, Watertown, MA, Sept. 30–Oct. 2, pp.
62
67
.
6.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Seventh International Symposium Ballistics
, Hague, The Netherlands, Apr. 19–21, pp.
541
547
.
7.
Johnson
,
G. R.
,
Hoegfeldt
,
J. M.
,
Lindholm
,
U. S.
, and
Nagy
,
A.
,
1983
, “
Response of Various Metals to Large Torsional Strains Over a Large Range of Strain Rates—Part 2: Less Ductile Metals
,”
ASME J. Eng. Mater. Technol.
,
105
(
1
), pp.
48
53
.
8.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristic of Three Metals Subjected to Various Strains, strain Rates, temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
9.
Banerjee
,
A.
,
Dhar
,
S.
,
Acharyya
,
S.
,
Datta
,
D.
, and
Nayak
,
N.
,
2015
, “
Determination of Johnson Cook Material and Failure Model Constants and Numerical Modelling of Charpy Impact Test of Armour Steel
,”
Mater. Sci. Eng. A
,
640
, pp.
200
209
.
10.
Gambirasio
,
L.
, and
Rizzi
,
E.
,
2014
, “
On the Calibration Strategies of the Johnson-Cook Strength Model: Discussion and Applications to Experimental Data
,”
Mater. Sci. Eng. A
,
610
, pp.
370
413
.
11.
Meyer
,
H. W.
, and
Kleponis
,
D. S.
,
2001
, “
An Analysis of Parameters for the Johnson-Cook Strength Model for 2-In-Thick Rolled Homogeneous Armor
,” Army Research Laboratory, Adelphi, MD, Report No.
ARL-TR-2528
.https://apps.dtic.mil/docs/citations/ADA392414
12.
Wang
,
X.
,
Li
,
H.
,
Chandrashekhara
,
K.
,
Rummel
,
S. A.
,
Lekakh
,
S.
,
Van Aken
,
D. C.
, and
O'Malley, R. J.
,
2017
, “
Inverse Finite Element Modeling of the Barreling Effect on Experimental Stress-Strain Curve for High Temperature Steel Compression Test
,”
J. Mater. Process. Technol.
,
243
, pp.
465
473
.
13.
Phaniraj
,
M. P.
, and
Lahiri
,
A. K.
,
2003
, “
The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steels
,”
J. Mater. Process. Technol.
,
141
(
2
), pp.
219
227
.
14.
Mathworks,
2015
, “
Global Optimization Toolbox: User's Guide
,” The MathWorks Inc., Natick, MA.
15.
Adeli
,
H.
, and
Cheng
,
N. T.
,
1993
, “
Integrated Genetic Algorithm for Optimization of Space Structures
,”
J. Aerosp. Eng.
,
6
(
4
), pp.
315
328
.
16.
Abramson
,
M. A.
,
2007
, “
Genetic Algorithm and Direct Search Toolbox: User's Guide
,” The MathWorks Inc., Natick, MA.
17.
Sivanandam
,
S. N.
, and
Deepa
,
S. N.
,
2007
,
Introduction to Genetic Algorithms
,
Springer, Berlin
.
18.
Dassault Systemes,
2009
, “
ABAQUS Analysis User's Manual V.6.9
,” Simulia Corp., Providence, RI.
19.
Levanger
,
H.
,
2012
, “
Simulating Ductile Fracture in Steel Using the Finite Element Method: Comparison of Two Models for Describing Local Instability Due to Ductile Fracture
,”
Master thesis
, University of Oslo, Oslo, Norway.https://www.duo.uio.no/handle/10852/10876
20.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.
21.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
A Comparative Study on Various Ductile Crack Formation Criteria
,”
ASME J. Eng. Mater. Technol.
,
126
(
3
), p.
314
.
22.
Hernandez
,
C.
,
Maranon
,
A.
,
Ashcroft
,
I. A.
, and
Casas-Rodriguez
,
J. P.
,
2013
, “
A Computational Determination of the Cowper-Symonds Parameters From a Single Taylor Test
,”
Appl. Math. Model.
,
37
(
7
), pp.
4698
4708
.
23.
Chipperfield
,
A. J.
, and
Fleming
,
P. J.
,
1995
, “
The MATLAB Genetic Algorithm Toolbox
,”
IEE
Colloquium on Applied Control Techniques Using MATLAB, London.https://www.researchgate.net/publication/3617525_The_MATLAB_genetic_algorithm_toolbox
24.
Nadai
,
A.
,
1950
,
Theory of Flow and Fracture of Solids
, Vol.
1
,
2nd ed.
,
McGraw-Hill, New York
.
25.
Schwer
,
L.
,
2007
, “
Johnson-Cook Model: Parameter Identification & Algorithm Verification
,”
Sixth European LS-DYNA Conference
, Gothenburg, Sweden, May 29–30, p. 17.
26.
Schwer
,
L.
,
2007
, “
Optional Strain-Rateforms for the Johnson-Cook Constitutive Model and the Role of the Parameter Epsilon _ 0
,”
Sixth European LS-DYNA Conference
, Gothenburg, Sweden, May 29–30, p. 19.
27.
Chen
,
C.-S.
,
1999
,
Material Characterization at High Rates of Plastic Deformation: Experiments and Numerical Modeling
,
Ohio State University
,
Columbus, OH
.
28.
Tsuchida
,
N.
,
Masuda
,
H.
,
Harada
,
Y.
,
Fukaura
,
K.
,
Tomota
,
Y.
, and
Nagai
,
K.
,
2008
, “
Effect of Ferrite Grain Size on Tensile Deformation Behavior of a Ferrite-Cementite Low Carbon Steel
,”
Mater. Sci. Eng. A
,
488
(
1–2
), pp.
446
452
.
29.
Nag
,
S.
,
Sardar
,
P.
,
Jain
,
A.
, and
Himanshu
,
A.
,
2014
, “
Correlation Between Ferrite Grain Size, microstructure and Tensile Properties of 0.17 wt% Carbon Steel With Traces of Microalloying Elements
,”
Mater. Sci. Eng. A
,
597
, pp.
253
263
.
30.
Vural
,
M.
,
Rittel
,
D.
, and
Ravichandran
,
G.
,
2003
, “
Investigation of the Dynamic Large Strain Behavior of 1018 Steel Using Shear-Compression Specimens
,”
SEM Annual Conference and Exposition Experimental and Applied Mechanics
, Charlotte, NC, June 2–4, p.
8
.
31.
Work
,
C. E.
, and
Dolan
,
T. J.
,
1953
, “
The Influence of Temperature and Rate of Strain on the Properties of Metals in Torsion
,” University of Illinois, Urbana, IL, Report No.
TR 53-10
.https://apps.dtic.mil/dtic/tr/fulltext/u2/003634.pdf
32.
Wang
,
K.
,
2016
,
Calibration of the Johnson-Cook Failure Parameters as the Chip Separation Criterion in the Modelling of the Orthogonal Metal Cutting Process
,
McMaster University
,
Hamilton, ON, Canada
.
33.
Corona
,
E.
, and
Orient
,
G.
,
2014
, “
An Evaluation of the Johnson-Cook Model to Simulate Puncture of 7075 Aluminum Plates
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2014-1550
.https://prod.sandia.gov/techlib-noauth/access-control.cgi/2014/141550.pdf
34.
Samantaray
,
D.
,
Mandal
,
S.
, and
Bhaduri
,
A. K.
,
2009
, “
A Comparative Study on Johnson-Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel
,”
Comput. Mater. Sci.
,
47
(
2
), pp.
568
576
.
35.
Wang
,
Y.
,
Zhou
,
Y.
, and
Xia
,
Y.
,
2004
, “
A Constitutive Description of Tensile Behavior for Brass Over a Wide Range of Strain Rates
,”
Mater. Sci. Eng. A
,
372
(
1–2
), pp.
186
90
.
36.
Lin
,
Y. C.
,
Chen
,
X.
, and
Liu
,
G.
,
2010
, “
A Modified Johnson—Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel
,”
Mater. Sci. Eng. A
,
527
(
26
), pp.
6980
6986
.
37.
He
,
A.
,
Xie
,
G.
,
Zhang
,
H.
, and
Wang
,
X.
,
2014
, “
A Modified Zerilli-Armstrong Constitutive Model to Predict Hot Deformation Behavior of 20CrMo Alloy Steel
,”
Mater. Des.
,
56
, pp.
122
127
.
38.
Borvik
,
T.
,
Hopperstad
,
O. S.
, and
Berstad
,
T.
,
2003
, “
On the Influence of Stress Triaxiality and Strain Rate on the Behaviour of a Structural Steel—Part II: Numerical Study
,”
Eur. J. Mech. A/Solids
,
22
, pp.
15
32
.
You do not currently have access to this content.