Fusion welding of nickel-based alloys is often associated with coarse grains and severe segregation, which finally results in the increase of hot cracking susceptibility and poor mechanical properties. Conventional gas tungsten arc welding (GTAW) can aggravate these phenomena, which is mainly due to its high heat input and low cooling rate. In this paper, the cooling rate was enhanced by spraying liquid nitrogen during the welding process. Compared to conventional GTAW, the rapid cooling produced narrower heat affected zone (HAZ) width and more equiaxed grains in the fusion zone, thus higher hardness distribution was also achieved in this condition. In addition, γ′ phase exhibited a dispersed distribution, and segregation has been improved. The results show that the HAZ width is decreased by about 50%, and the fusion zone consisting of the finest equiaxed grains and the lowest segregation was obtained, when the heat sink located on one side 10 mm away from the weld centerline. Also, fine equiaxed grains and the dispersed distribution of γ′ phase could improve the grain boundary strength and reduce the incidence of liquid films along grain boundaries, contributing to prevent nickel-based alloys welding hot cracking from initiating.

References

References
1.
Smith
,
W. F.
,
1993
,
Structure and Properties of Engineering Alloys
,
McGraw-Hill
,
New York
.
2.
DuPont
,
J. N.
,
Lippold
,
J. C.
, and
Kiser
,
S. D.
,
2009
,
Welding Metallurgy and Weldability of Nickel-Based Alloys
,
Wiley
,
Hoboken, NJ
.
3.
Davis
,
J. R.
,
1990
,
Metals Handbook
,
ASM International
,
Materials Park, OH
.
4.
Ye
,
X.
,
Hua
,
X. M.
, and
Wang
,
M.
,
2015
, “
Controlling Hot Cracking in Nickel-Based Inconel-718 Superalloy Cast Sheets During Tungsten Inert Gas Welding
,”
J. Mater. Process. Tech.
,
222
, pp.
381
390
.
5.
Nematzadeh
,
F.
,
Akbarpour
,
M. R.
,
Parvizi
,
S.
, and
Kokabi
,
A. H.
,
2012
, “
Effect of Welding Parameters on Microstructure, Mechanical Properties and Hot Cracking Phenomenon in Udimet 520 Superalloy
,”
Mater. Des.
,
36
, pp.
94
99
.
6.
Radhakrishna
,
C. H.
,
Rao
,
K. P.
, and
Srinivas
,
S.
,
1995
, “
Laves Phase in Superalloy 718 Weld Metals
,”
J. Mater. Sci. Lett.
,
14
(
24
), pp.
1810
1812
.
7.
Ram
,
G. D. J.
,
Rao
,
K. P.
, and
Reddy
,
G. M.
,
2004
, “
Control of Laves Phase in Inconel 718 GTA Welds With Current Pulsing
,”
Sci. Technol. Weld. Joining
,
9
(
5
), pp.
390
398
.
8.
Ram
,
G. D. J.
,
Reddy
,
A. V.
,
Rao
,
K. P.
, and
Reddy
,
G. M.
,
2005
, “
Improvement in Stress Rupture Properties of Inconel 718 Gas Tungsten Arc Welds Using Current Pulsing
,”
J. Mater. Sci.
,
40
(
6
), pp.
1497
1500
.
9.
Sivaprasad
,
K.
, and
Raman
,
S. G. S.
,
2008
, “
Influence of Weld Cooling Rate on Microstructure and Mechanical Properties of Alloy 718 Weldments
,”
Metall. Mater. Trans. A
,
39
(
9
), pp.
2115
2127
.
10.
Radhakrishna
,
C. H.
, and
Rao
,
K. P.
,
1997
, “
The Formation and Control of Laves Phase in Superalloy 718 Welds
,”
J. Mater. Sci.
,
32
(
8
), pp.
1977
1984
.
11.
Lee
,
H. T.
, and
Wu
,
J. L.
,
2009
, “
The Effect of Peak Temperature and Cooling Rate on the Susceptibility to Intergranular Corrosion of Alloy 690 by Laser Beam and Gas Tungsten Arc Welding
,”
Corros. Sci.
,
51
(
3
), pp.
439
445
.
12.
Singh
,
A. R. P.
,
Nag
,
S.
,
Hwang
,
J. Y.
, and
Viswanathan
,
G. B.
,
2011
, “
Influence of Cooling Rate on the Development of Multiple Generations of γ′ Phase Precipitates in a Commercial Nickel Base Superalloy
,”
Mater. Charact
,
62
(
9
), pp.
878
886
.
13.
Ojo
,
O. A.
, and
Chaturvedi
,
M. C.
,
2005
, “
On the Role of Liquated γ′ Phase Precipitates in Weld Heat Affected Zone Microfissuring of a Nickel-Based Superalloy
,”
Mater. Sci. Eng. A
,
403
(
1–2
), pp.
77
86
.
14.
Ojo
,
O. A.
,
Richards
,
N. L.
, and
Chaturvedi
,
M. C.
,
2004
, “
Contribution of Constitutional Liquation of Gamma Prime Precipitate to Weld HAZ Cracking of Cast Inconel 738 Superalloy
,”
Scr. Mater.
,
50
(
5
), pp.
641
646
.
15.
Ares
,
A. E.
,
Gassac
,
L. M.
,
Gueijmanb
,
S. F.
, and
Schvezov
,
C. E.
,
2008
, “
Correlation Between Thermal Parameters, Structures, Dendritic Spacing and Corrosion Behavior of Zn-Al Alloys With Columnar to Equiaxed Transition
,”
J. Cryst. Growth
,
310
(
7–9
), pp.
1355
1361
.
16.
Vitek
,
J. M.
,
Dasgupta
,
A.
, and
David
,
S. A.
,
1983
, “
Microstructural Modification of Austenitic Stainless Steels by Rapid Solidification
,”
Metall. Mater. Trans. A
,
14
(
9
), pp.
1833
1841
.
17.
Amuda
,
M. O. H.
, and
Mridha
,
S.
,
2013
, “
Grain Refinement and Hardness Distribution in Cryogenically Cooled Ferritic Stainless Steel Welds
,”
Mater. Des.
,
47
(
9
), pp.
365
371
.
18.
Amuda
,
M. O. H.
, and
Mridha
,
S.
,
2012
, “
Comparative Evaluation of Grain Refinement in AISI 430 FSS Welds by Elemental Metal Powder Addition and Cryogenic Cooling
,”
Mater. Des.
,
35
, pp.
609
618
.
19.
Hamatani
,
H.
,
Miyazaki
,
Y.
,
Otani
,
T.
, and
Ohkita
,
S.
,
2006
, “
Minimization of Heat-Affected Zone Size in Welded Ultra-Fine Grained Steel Under Cooling by Liquid Nitrogen During Laser Welding
,”
Mater. Sci. Eng. A
,
426
(
1–2
), pp.
21
30
.
20.
Sharma
,
C.
,
Dwivedi
,
D. K.
, and
Kumar
,
P.
,
2012
, “
Influence of In-Process Cooling on Tensile Behavior of Friction Stir Welded Joints of AA7039
,”
Mater. Sci. Eng. A
,
556
, pp.
479
487
.
21.
Manikandan
,
S. G. K.
,
Sivakumar
,
D.
,
Rao
,
K. P.
, and
Kamaraj
,
M.
,
2014
, “
Microstructural Characterization of Liquid Nitrogen Cooled Alloy 718 Fusion Zone
,”
J. Mater. Process. Tech.
,
214
(
12
), pp.
3141
3149
.
22.
Xu
,
N.
, and
Bao
,
Y. F.
,
2016
, “
Enhanced Mechanical Properties of Tungsten Inert Gas Welded AZ31 Magnesium Alloy Joint Using Two-Pass Friction Stir Processing With Rapid Cooling
,”
Mater. Sci. Eng. A
,
655
, pp.
292
299
.
23.
Zhang
,
Y.
,
Ying
,
Y. Y.
,
Liu
,
X. X.
, and
Wei
,
H. Y.
,
2016
, “
Deformation Control During the Laser Welding of a Ti6Al4V Thin Plate Using a Synchronous Gas Cooling Method
,”
Mater. Des.
,
90
, pp.
931
941
.
24.
Imam
,
M.
,
Ueji
,
R.
, and
Fujii
,
H.
,
2016
, “
Effect of Online Rapid Cooling on Microstructure and Mechanical Properties of Friction Stir Welded Medium Carbon Steel
,”
J. Mater. Process. Tech.
,
230
, pp.
62
71
.
25.
Ojo
,
O. A.
,
Wang
,
Y. L.
, and
Chaturvedi
,
M. C.
,
2008
, “
Heat Affected Zone Liquation Cracking in Electron Beam Welded Third Generation Nickel Base Superalloys
,”
Mater. Sci. Eng. A
,
476
(
1–2
), pp.
217
223
.
26.
Ojo
,
O. A.
,
2007
, “
Intergranular Liquation Cracking in Heat Affected Zone of a Welded Nickel Based Superalloy in as Cast Condition
,”
Mater. Sci. Tech
,
23
(
10
), pp.
1149
1155
.
27.
Thompson
,
R. G.
,
Cassimus
,
J. J.
,
Mayo
,
D. E.
, and
Dobbs
,
J. R.
,
1985
, “
The Relationship Between Grain Size and Microfissuring in Alloy 718
,”
Weld. J.
,
64
(4), pp.
91
96
.
28.
Lippold
,
J. C.
,
1983
, “
An Investigation of Heat-Affected Zone Hot Cracking in Alloy 800
,”
Weld. J.
,
62
, pp.
1
11
.
29.
Veprek
,
S.
,
1999
, “
The Search for Novel, Superhard Materials
,”
J. Vac. Sci. Technol. A
,
17
(
5
), pp.
2401
2420
.
30.
Ogborn
,
J. S.
,
Olson
,
D. L.
, and
Cieslak
,
M. J.
,
1995
, “
Influence of Solidification on the Microstructural Evolution of Nickel Base Weld Metal
,”
Mater. Sci. Eng. A
,
203
(
1–2
), pp.
134
139
.
You do not currently have access to this content.