Nano-scale multilayer composite thin films are potential candidates for coating applications at harsh environments due to their promising mechanical and thermal properties. In this study, a viscoplasticity continuum model based on the plastic flow potential of metal/ceramic nanolayer composites, obtained from molecular dynamics (MD) simulations, is developed to build up a multiscale model bridges atomistic simulation with continuum models for the thin film composites. The model adopts a power law hardening considering confined layer slip (CLS) mechanism and accounts for the evolution of dislocation density based on the statistically stored dislocations and geometrically necessary dislocations. It is then implemented into a finite element code (ls-dyna) to investigate the deformation behavior of nanolayer composites at the macroscale. The deformation behavior of a high strength steel coated with Nb/NbC multilayer is also examined.

References

References
1.
Damadam
,
M.
,
Shao
,
S.
,
Ayoub
,
G.
, and
Zbib
,
H. M.
,
2017
, “
Recent Advances in Modeling of Interfaces and Mechanical Behavior of Multilayer Metallic/Ceramic Composites
,”
J. Mater. Sci.
,
53
(8), pp.
5604
5617
.
2.
Li
,
N.
, and
Liu
,
X.-Y.
,
2017
, “
Review: Mechanical Behavior of Metal/Ceramic Interfaces in Nanolayered Composites—Experiments and Modeling
,”
J. Mater. Sci.
,
53
(8), pp.
5562
5583
.
3.
Salehinia
,
I.
,
Shao
,
S.
,
Wang
,
J.
, and
Zbib
,
H. M.
,
2014
, “
Plastic Deformation of Metal/Ceramic Nanolayered Composites
,”
JOM
,
66
(10), pp.
2078
2085
.
4.
Yang
,
L. W.
,
Mayer
,
C.
,
Li
,
N.
,
Baldwin
,
J.
,
Mara
,
N.
,
Chawla
,
N.
,
Aldareguia
,
J.
, and
LIorca
,
J.
,
2018
, “
Mechanical Properties of Metal-Ceramic Nanolaminates: Effect of Constraint and Temperature
,”
Acta Mater.
,
142
, pp.
37
48
.
5.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(5566), pp.
280
284
.
6.
Dück
,
A.
,
Gamer
,
N.
,
Gesatzke
,
W.
,
Griepentrog
,
M.
,
Osterle
,
W.
,
Sahre
,
M.
, and
Urban
,
I.
,
2001
, “
Ti/TiN Multilayer Coatings: Deposition Technique, Characterization and Mechanical Properties
,”
Surf. Coat. Technol.
,
142–144
, pp.
579
584
.
7.
Ma
,
K. J.
,
Bloyce
,
A.
, and
Bell
,
T.
,
1995
, “
Examination of Mechanical Properties and Failure Mechanisms of TiN and Ti−TiN Multilayer Coatings
,”
Surf. Coat. Technol.
,
76–77
(Pt. 1), pp.
297
302
.
8.
Zhang
,
K.
,
Hao
,
L.
,
Du
,
M.
,
Mi
,
J.
,
Wang
,
J.
, and
Meng
,
J.
,
2017
, “
A Review on Thermal Stability and High Temperature Induced Ageing Mechanisms of Solar Absorber Coatings
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
1282
1299
.
9.
Salehinia
,
I.
,
Shao
,
S.
,
Wang
,
J.
, and
Zbib
,
H. M.
,
2015
, “
Interface Structure and the Inception of Plasticity in Nb/NbC Nanolayered Composites
,”
Acta Mater.
,
86
, pp.
331
340
.
10.
Yang
,
W.
,
Ayoub
,
G.
,
Salehinia
,
I.
,
Mansoor
,
B.
, and
Zbib
,
H.
,
2017
, “
Deformation Mechanisms in Ti/TiN Multilayer Under Compressive Loading
,”
Acta Mater.
,
122
, pp.
99
108
.
11.
Bhattacharyya
,
D.
,
Mara
,
N. A.
,
Dickerson
,
P.
,
Hoagland
,
R.
, and
Misra
,
A.
,
2011
, “
Compressive Flow Behavior of Al–TiN Multilayers at Nanometer Scale Layer Thickness
,”
Acta Mater.
,
59
(10), pp.
3804
3816
.
12.
Bhattacharyya
,
D.
,
Mara
,
N. A.
,
Dickerson
,
P.
,
Hoagland
,
R.
, and
Misra
,
A.
,
2010
, “
A Transmission Electron Microscopy Study of the Deformation Behavior Underneath Nanoindents in Nanoscale Al–TiN Multilayered Composites
,”
Philos. Mag.
,
90
(13), pp.
1711
1724
.
13.
Bhattacharyya
,
D.
,
Mara
,
N. A.
,
Hoagland
,
R. G.
, and
Misra
,
A.
,
2008
, “
Nanoindentation and Microstructural Studies of Al/TiN Multilayers With Unequal Volume Fractions
,”
Scr. Mater.
,
58
(11), pp.
981
984
.
14.
Abadias
,
G.
,
Dub
,
S.
, and
Shmegera
,
R.
,
2006
, “
Nanoindentation Hardness and Structure of Ion Beam Sputtered TiN, W and TiN/W Multilayer Hard Coatings
,”
Surf. Coat. Technol.
,
200
(22–23), pp.
6538
6543
.
15.
Daia
,
M.
,
Aubert
,
P.
,
Labdi
,
S.
,
Sant
,
C.
,
Sadi
,
F.
, and
Houdy
,
P. H.
,
2000
, “
Nanoindentation Investigation of Ti/TiN Multilayers Films
,”
J. Appl. Phys.
,
87
, pp.
7753
7757
.
16.
Zhang
,
G. A.
,
Wu
,
Z. G.
,
Wang
,
M. X.
,
Fan
,
X.
,
Wang
,
J.
, and
Yan
,
P.
,
2007
, “
Structure Evolution and Mechanical Properties Enhancement of Al/AlN Multilayer
,”
Appl. Surf. Sci.
,
253
(22), pp.
8835
8840
.
17.
Mook
,
W. M.
,
Raghavan
,
R.
,
Baldwin
,
J. K.
,
Frey
,
D.
,
Michler
,
J.
, and
Mara
,
N.
,
2013
, “
Indentation Fracture Response of Al–TiN Nanolaminates
,”
Mater. Res. Lett.
,
1
(2), pp.
102
108
.
18.
Lotfian
,
S.
,
Rodríguez
,
M.
,
Yazzie
,
K. E.
,
Chawla
,
N.
,
LIorca
,
J.
, and
Aldareguia
,
M.
,
2013
, “
High Temperature Micropillar Compression of Al/SiC Nanolaminates
,”
Acta Mater.
,
61
(12), pp.
4439
4451
.
19.
Damadam
,
M.
,
Shao
,
S.
,
Salehinia
,
I.
,
Ayoub
,
G.
, and
Zbib
,
H.
,
2017
, “
Molecular Dynamics Simulations of Mechanical Behavior in Nanoscale Ceramic–Metallic Multilayer Composites
,”
Mater. Res. Lett.
,
5
(5), pp.
1
8
.
20.
Li
,
N.
,
Wang
,
H.
,
Misra
,
A.
, and
Wang
,
J.
,
2014
, “
In Situ Nanoindentation Study of Plastic Co-Deformation in Al–TiN Nanocomposites
,”
Sci. Rep.
,
4
(4), p.
6633
.
21.
Huang
,
S.
,
Wang
,
J.
, and
Zhou
,
C.
,
2015
, “
Effect of Plastic Incompatibility on the Strain Hardening Behavior of Al–TiN Nanolayered Composites
,”
Mater. Sci. Eng. A
,
636
, pp.
430
433
.
22.
Wirth
,
B. D.
,
Caturla
,
M. J.
,
Diaz de la Rubia
,
T.
,
Khraishi
,
T.
, and
Zbib
,
H.
,
2001
, “
Mechanical Property Degradation in Irradiated Materials: A Multiscale Modeling Approach
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
,
180
(1–4), pp.
23
31
.
23.
Groh
,
S.
,
Marin
,
E. B.
,
Horstemeyer
,
M. F.
, and
Zbib
,
H. M.
,
2009
, “
Multiscale Modeling of the Plasticity in an Aluminum Single Crystal
,”
Int. J. Plast.
,
25
(8), pp.
1456
1473
.
24.
Shao
,
S.
,
Misra
,
A.
,
Huang
,
H.
, and
Wang
,
J.
,
2018
, “
Micro-Scale Modeling of Interface-Dominated Mechanical Behavior
,”
J. Mater. Sci.
,
53
(8), pp.
5546
5561
.
25.
Yasin
,
H.
,
Zbib
,
H. M.
, and
Khaleel
,
M. A.
,
2001
, “
Size and Boundary Effects in Discrete Dislocation Dynamics: Coupling With Continuum Finite Element
,”
Mater. Sci. Eng. A
,
309–310
, pp.
294
299
.
26.
Xiong
,
L.
,
Xu
,
S.
,
McDowell
,
D. L.
, and
Chen
,
Y.
,
2015
, “
Concurrent Atomistic–Continuum Simulations of Dislocation–Void Interactions in Fcc Crystals
,”
Int. J. Plast.
,
65
, pp.
33
42
.
27.
Roters
,
F.
,
Eisenlohr
,
P.
,
Hantcherli
,
L.
,
Tjahjanto
,
D.
,
Bieler
,
T.
, and
Raabe
,
D.
,
2010
, “
Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications
,”
Acta Mater.
,
58
(4), pp.
1152
1211
.
28.
Gu
,
T.
,
Castelnau
,
O.
,
Forest
,
S.
,
Luanco
,
E.
,
Lecouturier
,
F.
,
Proudhon
,
H.
, and
Thilly
,
L.
,
2017
, “
Multiscale Modeling of the Elastic Behavior of Architectured and Nanostructured Cu–Nb Composite Wires
,”
Int. J. Solids Struct.
,
121
, pp.
148
162
.
29.
Gröger
,
R.
,
Racherla
,
V.
,
Bassani
,
J. L.
, and
Vitek
,
V.
,
2008
, “
Multiscale Modeling of Plastic Deformation of Molybdenum and Tungsten—II: Yield Criterion for Single Crystals Based on Atomistic Studies of Glide of 1/2〈111〉 Screw Dislocations
,”
Acta Mater.
,
56
(19), pp.
5412
5425
.
30.
Segurado
,
J.
,
Lebensohn
,
R. A.
,
LLorca
,
J.
, and
Tomé
,
C. N.
,
2012
, “
Multiscale Modeling of Plasticity Based on Embedding the Viscoplastic Self-Consistent Formulation in Implicit Finite Elements
,”
Int. J. Plast.
,
28
(1), pp.
124
140
.
31.
Chandra
,
S.
,
Samal
,
M. K.
,
Chavan
,
V. M.
, and
Raghunathan
,
S.
,
2018
, “
Hierarchical Multiscale Modeling of Plasticity in Copper: From Single Crystals to Polycrystalline Aggregates
,”
Int. J. Plast.
,
101
, pp.
188
212
.
32.
Zbib
,
H. M.
, and
Diaz de la Rubia
,
T.
,
2002
, “
A Multiscale Model of Plasticity
,”
Int. J. Plast.
,
18
(9), pp.
1133
1163
.
33.
Damadam
,
M.
,
Shao
,
S.
,
Salehinia
,
I.
,
Ayoub
,
G.
, and
Zbib
,
H.
,
2017
, “
Strength and Plastic Deformation Behavior of Nanolaminate Composites With Pre-Existing Dislocations
,”
Comput. Mater. Sci.
,
138
, pp.
42
48
.
34.
Montheillet
,
F.
,
Jonas
,
J. J.
, and
Benferrah
,
M.
,
1991
, “
Development of Anisotropy During the Cold Rolling of Aluminium Sheet
,”
Int. J. Mech. Sci.
,
33
(3), pp.
197
209
.
35.
Misra
,
A.
,
Hirth
,
J. P.
, and
Hoagland
,
R. G.
,
2005
, “
Length-Scale-Dependent Deformation Mechanisms in Incoherent Metallic Multilayered Composites
,”
Acta Mater.
,
53
(18), pp.
4817
4824
.
36.
Li
,
N.
,
Wang
,
J.
,
Misra
,
A.
, and
Huang
,
J. Y.
,
2012
, “
Direct Observations of Confined Layer Slip in Cu/Nb Multilayers
,”
Microsc. Microanal.
,
18
, pp.
1155
1162
.
37.
Zhu
,
T.
,
Li
,
J.
,
Samanta
,
A.
,
Leach
,
A.
, and
Gall
,
K.
,
2008
, “
Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation
,”
Phys. Rev. Lett.
,
100
, p. 025502.https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.025502
38.
Abdolrahim
,
N.
,
Zbib
,
H. M.
, and
Bahr
,
D. F.
,
2014
, “
Multiscale Modeling and Simulation of Deformation in Nanoscale Metallic Multilayer Systems
,”
Int. J. Plast.
,
52
, pp.
33
50
.
39.
Kocks
,
U. F.
,
1976
, “
Laws for Work-Hardening and Low-Temperature Creep
,”
ASME J. Eng. Mater. Technol.
,
98
(1), pp.
76
85
.
40.
Ohashi
,
T.
,
Kawamukai
,
M.
, and
Zbib
,
H.
,
2007
, “
A Multiscale Approach for Modeling Scale-Dependent Yield Stress in Polycrystalline Metals
,”
Int. J. Plast.
,
23
(5), pp.
897
914
.
41.
Gao
,
H.
, and
Huang
,
Y.
,
2003
, “
Geometrically Necessary Dislocation and Size-Dependent Plasticity
,”
Scr. Mater.
,
42
(2), pp.
113
118
.
42.
Mastorakos
,
I. N.
,
Schoeppner
,
R. L.
,
Kowalczyk
,
B.
, and
Bahr
,
D. F.
,
2017
, “
The Effect of Size and Composition on the Strength and Hardening of Cu–Ni/Nb Nanoscale Metallic Composites
,”
J. Mater. Res.
,
32
(13), pp.
2542
2550
.
43.
El-Awady
,
J. A.
,
2015
, “
Unravelling the Physics of Size-Dependent Dislocation-Mediated Plasticity
,”
Nat. Commun.
,
6
(6), p. 5926.https://www.nature.com/articles/ncomms6926
44.
Ramesh Babu
,
S.
,
Senthil Kumar
,
V. S.
,
Karunamoorthy
,
L.
, and
Madhusudhan Reddy
,
G.
,
2014
, “
Investigation on the Effect of Friction Stir Processing on the Superplastic Forming of AZ31B Alloy
,”
Mater. Des.
,
53
, pp.
338
348
.
You do not currently have access to this content.