In this study, we used powder metallurgy process to develop gradient concentrated single-phase fine magnesium–zinc alloy particles. Fine magnesium particles were initially dry coated with nanometer size zinc particles in homogeneous manner and cold compacted to cylindrical billet. Zinc atoms were diffused in to the magnesium particles during high-temperature sintering process and produced the single-phase gradient solid solution. The gradient concentration of zinc induced gradual grain refinement in the magnesium particles. The powder metallurgy processed gradient concentrated alloy particles showed an excellent level of hardness, strength, ductility, and fracture toughness in their bulk form, which was even much higher when compared with unalloyed magnesium. Despite having gradient solid solution structure, the developed alloy particles showed homogeneous properties in their bulk form.

References

References
1.
Sobczak
,
J. J.
, and
Drenchev
,
L.
,
2013
, “
Metallic Functionally Graded Materials: A Specific Class of Advanced Composites
,”
J. Mater. Sci. Technol.
,
29
(
4
), pp.
297
316
.
2.
Kawasaki
,
A.
, and
Watanabe
,
R.
,
1997
, “
Concept and P/M Fabrication of Functionally Gradient Materials
,”
Ceram. Int.
,
23
(
1
), pp.
73
83
.
3.
Koizumi
,
M.
, and
Niino
,
M.
,
1995
, “
Overview of FGM Research in Japan
,”
MRS Bull.
,
20
(
1
), pp.
19
24
.
4.
Mahamood
,
R. M.
, and
Akinlabi
,
E. T.
,
2017
,
Functionally Graded Materials
,
Springer International Publishing AG
,
Cham, Switzerland
.
5.
Zhou
,
Z. J.
,
Song
,
S. X.
,
Du
,
J.
,
Zhong
,
Z. H.
, and
Ge
,
C. C.
,
2007
, “
Performance of W/Cu FGM-Based Plasma Facing Components Under High Heat Load Test
,”
J. Nucl. Mater.
,
363–365
, pp.
1309
1314
.
6.
Kieback
,
B.
,
Neubrand
,
A.
, and
Riedel
,
H.
,
2003
, “
Processing Techniques for Functionally Graded Materials
,”
Mat. Sci. Eng. A
,
362
(
1–2
), pp.
81
105
.
7.
Watanabe
,
Y.
,
Yamanaka
,
N.
,
Sato
,
H.
, and
Fujiwara
,
E. M.
,
2009
, “
Novel Fabrication Method for Functionally Graded Materials Under Centrifugal Force: The Centrifugal Mixed-Powder Method
,”
Materials
,
2
(
4
), pp.
2510
2525
.
8.
Nemat-Alla
,
M. M.
,
Ata
,
M. H.
,
Bayoumi
,
M. R.
, and
Khair-Eldeen
,
W.
,
2001
, “
Powder-Metallurgical Fabrication and Microstructural Investigations of Aluminum/Steel Functionally Graded Material
,”
Mater. Sci. Appl.
,
2
(
12
), pp.
1708
1718
.
9.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2014
, “
Revolutionary Additive Manufacturing: An Overview
,”
Laser Eng.
,
27
(3–4), pp.
161
178
. http://www.oldcitypublishing.com/journals/lie-home/lie-issue-contents/lie-volume-27-number-3-4-2014/lie-27-3-4-p-161-178/
10.
Tang
,
X.
,
Zhang
,
H.
,
Du
,
D.
,
Qu
,
D.
,
Hu
,
C.
, and
Xie
,
R.
,
2014
, “
Fabrication of W–Cu Functionally Graded Material by Spark Plasma Sintering Method
,”
Int. J. Refract. Met. Hard Mater
,
42
, pp.
193
199
.
11.
Yu
,
L.
,
Gong
,
D.
,
Wang
,
C.
,
Yang
,
Z.
, and
Zhang
,
L.
,
2003
, “
Microstructure Analysis of W-Mo-Ti Functionally Graded Materials Fabricated by Co-Sedimentation
,”
Key Eng. Mater.
,
249
, pp.
299
302
.
12.
Xiong
,
H.
,
Zhang
,
L.
,
Chen
,
L.
,
Hirai
,
T.
, and
Yuan
,
R.
,
2000
, “
Design and Fabrication of W-Mo-Ti-TiAl-Al System Functionally Graded Material
,”
Metall. Mater. Trans. A
,
31
(
9
), pp.
2369
2376
.
13.
Hu
,
T.
,
Chen
,
L.
,
Wu
,
S. L.
,
Chu
,
C. L.
,
Wang
,
L. M.
,
Yeung
,
K. W. K.
, and
Chu
,
P. K.
,
2011
, “
Graded Phase Structure in the Surface Layer of NiTi Alloy Processed by Surface Severe Plastic Deformation
,”
Scr. Mater.
,
64
(
11
), pp.
1011
1014
.
14.
Ding
,
L.
,
Luo
,
G.
,
Shen
,
Q.
, and
Zhang
,
L.
,
2003
, “
Fabrication of Ti-Mg System Composite With Graded Density at a Low Temperature by SPS Method
,”
Key Eng. Mater.
,
249
, pp.
291
294
.
15.
Ilic
,
D.
,
Fiscina
,
J.
,
Oliver
,
C. G.
, and
Meucklich
,
F.
,
2005
, “
Properties of Cu-W Functionally Graded Materials Produced by Segregation and Infiltration
,”
Mater. Sci. Forum
,
492–493
, pp.
123
128
.
16.
Sato
,
H.
,
Murase
,
T.
,
Fujii
,
T.
,
Onaka
,
S.
,
Watanabe
,
Y.
, and
Kato
,
M.
,
2008
, “
Formation of a Wear-Induced Layer With Nanocrystalline. Structure in Al-Al3Ti Functionally Graded Material
,”
Acta Mater.
,
56
(
17
), pp.
4549
4558
.
17.
Song
,
C.
,
Xu
,
Z.
,
Liu
,
X.
,
Liang
,
G.
, and
Li
,
J.
,
2005
, “
In Situ Multi-Layer Functionally Graded Materials by Electromagnetic Separation Method
,”
Mater. Sci. Eng. A
,
393
(
1–2
), pp.
164
169
.
18.
Watanabe
,
Y.
,
Sato
,
R.
,
Kim
,
I. S.
,
Miura
,
S.
, and
Miura
,
H.
,
2005
, “
Functionally Graded Material Fabricated by a Centrifugal Method From ZK60A Magnesium Alloy
,”
Mater. Trans.
,
46
(
5
), pp.
944
949
.
19.
Gupta
,
M.
, and
Sharon
,
N. M. L.
,
2011
,
Magnesium, Magnesium Alloys, and Magnesium Composites
,
Wiley
,
Hoboken, NJ
.
20.
Raynor
,
G. V.
,
1959
,
The Physical Metallurgy of Magnesium and Its Alloys
,
Pergamon Press
,
London
.
21.
Staiger
,
M. P.
,
Pietak
,
A. M.
,
Huadmai
,
J.
, and
Dias
,
G.
,
2006
, “
Magnesium and Its Alloys as Orthopedic Biomaterials: A Review
,”
Biomaterials
,
27
(
9
), pp.
1728
1734
.
22.
Karparvarfard
,
S. M. H.
,
Shaha
,
S. K.
,
Behravesh
,
S. B.
,
Jahed
,
H.
, and
Williams
,
B. W.
,
2017
, “
Microstructure, Texture and Mechanical Behavior Characterization of Hot Forged Cast ZK60 Magnesium Alloy
,”
J. Mater. Sci. Technol.
,
33
(
9
), pp.
907
918
.
23.
Hou
,
L.
,
Li
,
B.
,
Wu
,
R.
,
Cui
,
L.
,
Ji
,
P.
,
Long
,
R.
,
Zhang
,
J.
,
Li
,
X.
,
Dong
,
A.
, and
Sun
,
B.
,
2017
, “
Microstructure and Mechanical Properties at Elevated Temperature of Mg-Al-Ni Alloys Prepared Through Powder Metallurgy
,”
J. Mater. Sci. Technol.
,
33
(
9
), pp.
947
953
.
24.
Vogel
,
M.
,
Kraft
,
O.
, and
Arzt
,
E.
,
2005
, “
Effect of Calcium Additions on the Creep Behavior of Magnesium Die-Cast Alloy ZA85
,”
Met. Mater. Trans. A
,
36
(
7
), pp.
1713
1719
.
25.
Dongsong
,
Y.
,
Erlin
,
Z.
, and
Songyan
,
Z.
,
2009
, “
Effect of Zn Content on Microstructure, Mechanical Properties and Fracture Behavior of Mg-Mn Alloy
,”
China Foundry
,
6
(1), pp.
43
47
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.614.2317&rep=rep1&type=pdf
26.
Cai
,
S.
,
Lei
,
T.
,
Li
,
N.
, and
Feng
,
F.
,
2012
, “
Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn Alloys
,”
Mat. Sci. Eng. C-Mater.
,
32
(
8
), pp.
2570
2577
.
27.
Nie
,
J. F.
,
2012
, “
Precipitation and Hardening in Magnesium Alloys
,”
Met. Mater. Trans. A
,
43
(
11
), pp.
3891
3939
.
28.
Hassan
,
S. F.
,
2017
, “
Microstructure and Mechanical Properties of Nickel Particle Reinforced Magnesium Composite: Impact of Reinforcement Introduction Method
,”
Int. J Mater. Res.
,
108
(
3
), pp.
185
191
.
29.
Powder Diffraction File
,
1991
,
International Center for Diffraction Data
,
Powder Diffraction File, Swarthmore
,
PA
.
30.
Neumann
,
G.
, and
Tuijn
,
C.
,
2009
,
Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data
,
Elsevier
,
Oxford, UK
.
31.
Gu
,
J.
,
Huang
,
Y.
,
Zhang
,
M.
,
Kainer
,
K. U.
, and
Hort
,
N.
,
2017
,
Magnesium Tech. 2017
,
The Minerals, Metals & Materials Society
, Cham,
Switzerland
.
32.
Yan
,
Y.
,
Cao
,
H.
,
Kang
,
Y.
,
Yu
,
K.
,
Xiao
,
T.
,
Luo
,
J.
,
Deng
,
Y.
,
Fang
,
H.
,
Xiong
,
H.
, and
Dai
,
Y.
,
2017
, “
Effects of Zn Concentration and Heat Treatment on the Microstructure, Mechanical Properties and Corrosion Behavior of as-Extruded Mg-Zn Alloys Produced by Powder Metallurgy
,”
J. Alloy. Compd.
,
693
, pp.
1277
1289
.
33.
Park
,
S. H.
,
Lee
,
J. H.
,
Moon
,
B. G.
, and
You
,
B. S.
,
2014
, “
Tension–Compression Yield Asymmetry in as-Cast Magnesium Alloy
,”
J. Alloy. Compd.
,
617
, pp.
277
280
.
34.
Cáceres
,
C. H.
, and
Lukáč
,
P.
,
2008
, “
Strain Hardening Behaviour and the Taylor Factor of Pure Magnesium
,”
Philos. Mag.
,
88
(
7
), pp.
977
989
.
35.
Agnew
,
S. R.
,
Yoo
,
M. H.
, and
Tome
,
C. N.
,
2001
, “
Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y
,”
Acta Mater.
,
49
(
20
), pp.
4277
4289
.
36.
Xu
,
S.
,
Gertsman
,
V. Y.
,
Li
,
J.
,
Thomson
,
J. P.
, and
Sahoo
,
M.
,
2005
, “
Role of Mechanical Twinning in Tensile Compressive Yield Asymmetry of Die Cast Mg Alloys
,”
Can. Metall. Q.
,
44
(
2
), pp.
155
166
.
37.
Barnett
,
M. R.
,
Davies
,
C. H. J.
, and
Ma
,
X.
,
2005
, “
An Analytical Constitutive Law for Twinning Dominated Flow in Magnesium
,”
Scr. Mater.
,
52
(
7
), pp.
627
632
.
38.
Barnett
,
M. R.
,
Keshavarz
,
Z.
,
Beer
,
A. G.
, and
Atwell
,
D.
,
2004
, “
Influence of Grain Size on the Compressive Deformation of Wrought Mg–3Al–1Zn
,”
Acta Mater.
,
52
(
17
), pp.
5093
5103
.
39.
Jiang
,
L.
,
Jonas
,
J. J.
,
Luo
,
A. A.
,
Sachdev
,
A. K.
, and
Godet
,
S.
,
2007
, “
Influence of 10–12 Extension Twinning on the Flow Behavior of AZ31 Mg Alloy
,”
Mat. Sci. Eng. A-Struct.
,
445–446
, pp.
302
309
.
40.
Jiang
,
W.
,
Chen
,
T.
,
Wang
,
L.
,
Feng
,
Y.
,
Zhu
,
Y.
,
Wang
,
K.
,
Luo
,
J.
, and
Zhang
,
S.
,
2013
, “
Microstructure in the Semi-Solid State and Mechanical Properties of AZ80 Magnesium Alloy Reheated From the as-Cast and Extruded States
,”
Acta Metall. Sin.
,
26
(
4
), pp.
473
477
.
41.
Huang
,
Z. H.
,
Qi
,
W. J.
,
Zheng
,
K. H.
,
Zhang
,
X. M.
,
Liu
,
M.
,
Yu
,
Z. M.
, and
Xu
,
J.
,
2013
, “
Microstructures and Mechanical Properties of Mg–Zn–Zr–Dy Wrought Magnesium Alloys
,”
Bull. Mater. Sci.
,
36
(
3
), pp.
437
445
.
42.
Kim
,
W. J.
,
Jeong
,
H. G.
, and
Jeong
,
H. T.
,
2009
, “
Achieving High Strength and High Ductility in Magnesium Alloys Using Severe Plastic Deformation Combined With Low-Temperature Aging
,”
Scr. Mater.
,
61
(
11
), pp.
1040
1043
.
43.
Orlov
,
D.
,
Raab
,
G.
,
Lamark
,
T. T.
,
Popov
,
M.
, and
Estrin
,
Y.
,
2011
, “
Improvement of Mechanical Properties of Magnesium Alloy ZK60 by Integrated Extrusion and Equal Channel Angular Pressing
,”
Acta Mater.
,
59
(
1
), pp.
375
385
.
You do not currently have access to this content.