This paper presents an experimental investigation on the effect of interference-fit on the bearing strength and fatigue life of pin-loaded plain-woven and cross ply carbon fiber-reinforced plastic laminate (CFRP). Stainless steel pins are installed to five different sized holes on the CFRP specimens to achieve transition-fit and four interference-fits (0.2%, 0.4%, 0.6%, and 1.0%). The quasi-static and fatigue (R = 0.1) properties of the pin-loaded CFRP are then compared to each other. From the experimental results, it is demonstrated that the interference-fit can improve the joint stiffness per unit bearing area, or the joint stiffness, under both the static and dynamic bearing load conditions. The ultimate bearing strength, fatigue life, and joint stiffness of interference-fit samples are higher than those of the transition-fit samples and they are maximized at an interference-fit percentage of 0.4%. Regardless of interference-fit percentage, the fatigue life of a pin-loaded CFRP specimen tends to be proportional to its joint stiffness in the beginning of a fatigue test. During fatigue testing, the joint stiffness of pin-loaded CFRP gradually decreases to the range of 18.8 GPa/mm to 18.6 GPa/mm when bearing failure occurs. The increased joint stiffness by interference-fit delays CFRP hole damage growth by reducing pin displacement under fatigue cycles.

References

References
1.
Mazumdar
,
S.
,
2017
, “
State of the Industry Report: A Look at Five Key Areas in the Composites Industry
,” American Composites Manufacturers Association, Arlington, VA, pp.
19
23
.
2.
Thoppul
,
S. D.
,
Finegan
,
J.
, and
Gibson
,
R. F.
,
2009
, “
Mechanics of Mechanically Fastened Joints in Polymer-Matrix Composite Structures—A Review
,”
Compos. Sci. Technol.
,
69
(
3–4
), pp.
301
329
.
3.
Kim
,
D.
, and
Ramulu
,
M.
,
2007
, “
Study on the Drilling of Titanium/Graphite Hybrid Composites
,”
ASME J. Eng. Mater. Technol.
,
129
(
3
), pp.
390
396
.
4.
Kim
,
S. Y.
,
Koo
,
J. M.
,
Kim
,
D.
, and
Seok
,
C. S.
,
2011
, “
Prediction of the Static Fracture Strength of Hole Notched Plain Weave CFRP Composites
,”
Compos. Sci. Technol.
,
71
(
14
), pp.
1671
1676
.
5.
Di Scalea
,
F. L.
,
Cloud
,
G. L.
, and
Cappello
,
F.
,
1998
, “
A Study of the Effect of Clearance and Interference-Fits in a Pin-Loaded Cross-Ply FGRP Laminate
,”
J. Compos. Mater.
,
32
(
8
), pp.
783
802
.
6.
Choi
,
J. H.
,
Kang
,
M. S.
,
Koo
,
J. M.
,
Seok
,
C. S.
, and
Kim
,
H. I.
,
2010
, “
Fatigue Crack Propagation Behavior According to Fiber Arraying Direction for Load Direction in Woven CFRP Composite
,”
Int. J. Mod. Phys. B
,
24
(
15–16
), pp.
2615
2620
.
7.
Ducept
,
F.
,
Davies
,
P.
, and
Gamby
,
D.
,
2000
, “
Mixed Mode Failure Criteria for a Glass/Epoxy Composite and an Adhesively Bonded Composite/Composite Joint
,”
Int. J. Adhes. Adhes.
,
20
(
3
), pp.
233
244
.
8.
Canyurt
,
O. E.
, and
Zhang
,
J.
,
2006
, “
Pre-Stressed Adhesive Strap Joints for Thick Composite Sandwich Structures
,”
Int. J. Mech. Sci.
,
48
(
4
), pp.
389
399
.
9.
Camanho
,
P. P.
, and
Matthews
,
F. L.
,
1997
, “
Stress Analysis and Strength Prediction of Mechanically Fastened Joints in FRP: A Review
,”
Compos. Part A
,
28
(
6
), pp.
529
547
.
10.
Tserpes
,
K. I.
,
Labeas
,
G.
,
Papanikos
,
P.
, and
Kermanidis
,
T.
,
2002
, “
Strength Prediction of Bolted Joints in Graphite/Epoxy Composite Laminates
,”
Compos. Part B
,
33
(
7
), pp.
521
529
.
11.
Choi
,
J. H.
,
Ban
,
C. S.
, and
Kweon
,
J. H.
,
2008
, “
Failure Load Prediction of a Mechanically Fastened Composite Joint Subject to a Clamping Force
,”
J. Compos. Mater.
,
42
(
14
), pp.
1415
1429
.
12.
Ireman
,
T.
,
Ranvik
,
T.
, and
Eriksson
,
I.
,
2000
, “
On Damage Development in Mechanically Fastened Composite Laminates
,”
Compos. Struct.
,
49
(
2
), pp.
151
171
.
13.
Kim
,
S. Y.
,
Hennigan
,
D.
,
Kim
,
D.
, and
Seok
,
C. S.
,
2012
, “
Fatigue Enhancement by Interference-Fit in a Pin-Loaded Glass Fibre Reinforced Plastics Laminate
,”
J. Mech. Eng. Sci.
,
226
(
6
), pp.
1437
1446
.
14.
Okutan
,
B.
,
Aslan
,
Z.
, and
Karakuzu
,
R. A.
,
2001
, “
Study of the Effects of Various Geometric Parameters on the Failure Strength of Pin-Loaded Woven-Glass-Fiber Reinforced Epoxy Laminate
,”
Comp. Sci. Technol.
,
61
(
10
), pp.
1491
1497
.
15.
Ahn
,
H. S.
,
Kweon
,
J. H.
, and
Choi
,
J. H.
,
2005
, “
Failure of Unidirectional-Woven Composite Laminated Pin-Loaded Joints
,”
J. Reinf. Plast. Compos.
,
24
(
7
), pp.
735
752
.
16.
Ascione
,
F.
,
Feo
,
L.
, and
Maceri
,
F.
,
2009
, “
An Experimental Investigation on the Bearing Failure Load of Glass Fibre/Epoxy Laminates
,”
Compos. Part B
,
40
(
3
), pp.
197
205
.
17.
Ascione
,
F.
,
Feo
,
L.
, and
Maceri
,
F.
,
2010
, “
On the Pin-Bearing Failure Load of GFRP Bolted Laminates: An Experimental Analysis of Bolt Diameter Influence
,”
Compos. Part B
,
41
(
6
), pp.
482
490
.
18.
Mirzajanzadeh
,
M.
,
Chakherlou
,
T. N.
, and
Vogwell
,
J.
,
2011
, “
The Effect of Interference-Fit on Fretting Fatigue Crack Initiation of a Single Pinned Plate in 7075 Al Alloy
,”
Eng. Fract. Mech.
,
78
(
6
), pp.
1233
1246
.
19.
Jang
,
J. S.
,
Kim
,
D.
, and
Cho
,
M. R.
,
2008
, “
The Effect of Cold Expansion on the Fatigue Life of the Chamfered Holes
,”
ASME J. Eng. Mater. Technol.
,
130
(
3
), p.
031014
.
20.
Jang
,
J. S.
, and
Kim
,
D.
,
2008
, “
Re-Cold Expansion Process Simulation to Impart the Residual Stresses Around Fastener Holes in 6061 A-T6 Aluminum Alloy
,”
Proc. Inst. Mech. Eng. Part B
,
222
(
11
), pp.
1325
1332
.
21.
ISO
,
2010
, “
Geometrical Product Specifications (GPS)-ISO Code System for Tolerances on Linear Size—Part 1: Basis of Tolerances, Deviations and Fits
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 286-1:2010.
22.
Sendeckyj
,
G. P.
, and
Richardson
,
M. D.
,
1974
, “
Fatigue Behavior of a Graphite-Epoxy Laminate Loaded Through an Interference-Fit Pin
,”
Second Air Force Conference on Fibrous Composites in Flight Vehicle Design
, Air Force Flight Dynamics Lab, WPAFB, OH, Report No. AFFDL-TR-74-103.
23.
Liu
,
P.
, and
Zhang
,
K.
,
1991
, “
An Experimental Study on Fatigue Life of Interference-Fit Composite Joint
,”
ACTA Aeronaut. Astronaut. Sin.
,
12
(
12
), pp.
545
549
.
24.
Pradhan
,
B.
, and
Babu
,
P. R.
,
2007
, “
Assessment of Beneficial Effects of Interference-Fit in Pin-Loaded Cross-Ply FGRP Laminate
,”
J. Reinf. Plast. Compos.
,
26
(
8
), pp.
771
788
.
25.
Kiral
,
B. G.
,
2010
, “
Effect of the Clearance and Interference-Fit on Failure of the Pin-Loaded Composites
,”
Mater. Des.
,
31
(
1
), pp.
85
93
.
26.
Kim
,
S. Y.
,
He
,
B.
,
Shim
,
C. S.
, and
Kim
,
D.
,
2013
, “
An Experimental and Numerical Study on the Interference-Fit Pin Installation Process for Cross-Ply Glass Fiber Reinforced Plastics (GFRP)
,”
Compos. Part B
,
54
, pp.
153
162
.
27.
Wei
,
J.
,
Jiao
,
G.
,
Jia
,
P.
, and
Huang
,
T.
,
2013
, “
The Effect of Interference Fit Size on the Fatigue Life of Bolted Joints in Composite Laminates
,”
Compos. Part B
,
53
, pp.
62
68
.
28.
Li
,
J.
,
Zhang
,
K.
,
Liu
,
P.
,
Duan
,
Y.
, and
Du
,
K.
,
2016
, “
Effect of Interference Fit Size on Tensile Strength and Fatigue Life of CFRP/Ti Alloy Bolt Joints
,”
Indian J. Eng. Mater. Sci.
,
23
(
4
), pp.
247
253
.http://nopr.niscair.res.in/handle/123456789/39810
29.
Li
,
J.
,
Li
,
K.
,
Zhang
,
K.
,
Liu
,
P.
, and
Zou
,
P.
,
2015
, “
Interface Damage Behavior During Interference-Fit Bolt Installation Process for CFRP/Ti Alloy Joining Structure
,”
Fatigue Fract. Eng. Mater. Struct.
,
38
(
11
), pp.
1359
1371
.
30.
Li
,
J.
,
Zhang
,
K.
,
Li
,
Y.
,
Liu
,
P.
, and
Xia
,
J.
,
2016
, “
Influence of Interference Fit Size on Bearing Fatigue Response of Single-Lap Carbon Fiber Reinforced Polymer/Ti Alloy Bolted Joints
,”
Tribol. Int.
,
93
(
pt. A
), pp.
151
162
.
31.
ASTM,
2007
, “
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
,” ASTM, West Conshohocken, PA, Standard No. ASTM D 3039-07.
32.
ASTM,
2002
, “
Standard Test Method for Bearing Strength of Plastics
,” ASTM, West Conshohocken, PA, Standard No. ASTM D 953-02.
33.
Aktas
,
A.
,
2005
, “
Bearing Strength of Carbon Epoxy Laminates Under Static and Dynamic Loading
,”
Compos. Struct.
,
67
(
4
), pp.
485
489
.
34.
Karakuzu
,
R.
,
Gulem
,
T.
, and
Icten
,
B. M.
,
2006
, “
Failure Analysis of Woven Laminated Glass-Vinylester Composites With Pin-Loaded Hole
,”
Compos. Struct.
,
72
(
1
), pp.
27
32
.
35.
Kim
,
D.
,
Doan
,
X.
, and
Ramulu
,
M.
,
2005
, “
Drilling Performance and Machinability of PIXA-M and PEEK Thermoplastic Composites
,”
J. Thermoplast. Compos.
,
18
(
3
), pp.
195
217
.
36.
Kim
,
D.
,
Sturtvant
,
C.
, and
Kwon
,
P.
,
2012
, “
Effect of Ultra-Hard Coatings on Hole Quality of Carbon Fiber Reinforced Composites (CFRP) in Drilling
,”
ASME
Paper No. IMECE2012-88205.
37.
Tan
,
S. C.
, and
Cheng
,
S.
,
1997
, “
Failure Criteria for Fibrous Anisotropic Materials
,”
J. Mater. Civ. Eng.
,
5
(
2
), pp.
198
211
.
38.
ASTM,
2005
, “
Standard Test Method for Bearing Response of Polymer Matrix Composite Laminates
,” ASTM, West Conshohocken, PA, Standard No. ASTM D 5961.
39.
Kim
,
S. Y.
,
Hennigan
,
D.
, and
Kim
,
D.
,
2012
, “
Influence of Fabrication and Interference-Fit Techniques on Tensile and Fatigue Properties of Pin-Loaded Glass Fiber Reinforced Plastics Composites
,”
ASME J. Eng. Mater. Technol.
,
134
(
4
), p.
041012
.
You do not currently have access to this content.