The structure–property relationships of a vintage ASTM A7 steel is quantified in terms of stress state, temperature, and strain rate dependence. The microstructural stereology revealed primary phases to be 15.8% ± 2.6% pearlitic and 84.2% ± 2.6 ferritic with grain sizes of 13.3 μm ± 3.1 μm and 36.5 μm ± 7.0 μm, respectively. Manganese particle volume fractions represented 0.38–1.53% of the bulk material. Mechanical testing revealed a stress state dependence that showed a maximum strength increase of 85% from torsion to tension and a strain rate dependence that showed a maximum strength increase of 38% from 10−1 to 103 s−1at 20% strain. In tension, a negative strain rate sensitivity (nSRS) was observed in the quasi-static rate regime yet was positive when traversing from the quasi-static rates to high strain rates. Also, the A7 steel exhibited a significant ductility reduction as the temperature increased from ambient to 573 K (300 °C), which is uncommon for metals. The literature argues that dynamic strain aging (DSA) can induce the negative strain rate sensitivity and ductility reduction upon a temperature increase. Finally, a tension/compression stress asymmetry arises in this A7 steel, which can play a significant role since bending is prevalent in this ubiquitous structural material. Torsional softening was also observed for this A7 steel.

References

References
1.
Dudley
,
C. B.
,
1878
, “
The Chemical Composition and Physical Properties of Steel Rails
,”
J. Frankl. Inst.
,
106
(
6
), pp. 361–390.
2.
ASTM
,
1998
, ASTM 1898-1998: A Century of Progress, American Society for Testing and Materials, West Conshohocken, PA.
3.
Rivera
,
O. G.
,
McClelland
,
Z.
,
Rivera-Soto
,
P.
,
Whittington
,
W. R.
,
Francis
,
D.
,
Moser
,
R. D.
, and
Allison
,
P. G.
,
2016
, “
Interrupted Quasi-Static and Dynamic Tensile Experiments of Fully Annealed 301 Stainless Steel
,”
EPD Congress 2016
,
A.
Allanore
,
L.
Bartlett
,
C.
Wang
,
L.
Zhang
, and
J.
Lee
, eds.,
Springer International Publishing
,
Cham
, Switzerland, pp.
165
172
.
4.
Rodriguez
,
O. L.
,
Allison
,
P. G.
,
Whittington
,
W. R.
,
Francis
,
D. K.
,
Rivera
,
O. G.
,
Chou
,
K.
,
Gong
,
X.
,
Butler
,
T. M.
, and
Burroughs
,
J. F.
,
2015
, “
Dynamic Tensile Behavior of Electron Beam Additive Manufactured Ti6Al4V
,”
Mater. Sci. Eng. A
,
641
, pp.
323
327
.
5.
Francis
,
D. K.
,
Whittington
,
W. R.
,
Lawrimore
,
W. B.
,
Allison
,
P. G.
,
Turnage
,
S. A.
, and
Bhattacharyya
,
J. J.
,
2017
, “
Split Hopkinson Pressure Bar Graphical Analysis Tool
,”
Exp. Mech.
,
57
(
1
), pp.
179
183
.
6.
Whittington
,
W. R.
,
Oppedal
,
A. L.
,
Turnage
,
S.
,
Hammi
,
Y.
,
Rhee
,
H.
,
Allison
,
P. G.
,
Crane
,
C. K.
, and
Horstemeyer
,
M. F.
,
2014
, “
Capturing the Effect of Temperature, Strain Rate, and Stress State on the Plasticity and Fracture of Rolled Homogeneous Armor (RHA) Steel
,”
Mater. Sci. Eng. A
,
594
, pp.
82
88
.
7.
Allison
,
P. G.
,
Grewal
,
H.
,
Hammi
,
Y.
,
Brown
,
H. R.
,
Whittington
,
W. R.
, and
Horstemeyer
,
M. F.
,
2013
, “
Plasticity and Fracture Modeling/Experimental Study of a Porous Metal Under Various Strain Rates, Temperatures, and Stress States
,”
ASME J. Eng. Mater. Technol.
,
135
(
4
), p.
041008
.
8.
Hidalgo-Hernandez
,
R.
,
Allison
,
P.
,
Horstemeyer
,
M.
,
Crane
,
K.
, and
Charito
,
V.
,
2012
, “
Plasticity and Fracture of Vintage Steel Under Varying Stress-States, Strain Rates and Temperatures
,”
AIP Conference Proceedings
, American Institute of Physics, Melville, NY.
9.
Allison
,
P. G.
,
Horstemeyer
,
M. F.
,
Hammi
,
Y.
,
Brown
,
H. R.
,
Tucker
,
M. T.
, and
Hwang
,
Y.-K.
,
2011
, “
Microstructure–Property Relations of a Steel Powder Metal Under Varying Temperatures, Strain Rates, and Stress States
,”
Mater. Sci. Eng. A
,
529
, pp.
335
344
.
10.
Baird
,
J. D.
,
1963
, “
Strain-Ageing of Steel—A Critical Review
,”
Metall. Prog.
,
4
, pp. 186–192.
11.
Baird
,
J. D.
,
1971
, “
The Effects of Strain-Ageing Due to Interstitial Solutes on the Mechanical Properties of Metals
,”
Metall. Rev.
,
16
(
1
), pp.
1
18
.
12.
Sachdev
,
A. K.
,
1982
, “
Dynamic Strain Aging of Various Steels
,”
Metall. Trans. A
,
13
(
10
), pp.
1793
1797
.
13.
Cunningham
,
S.
,
1999
, “
Effect of Substitutional Elements on Dynamic Strain Aging in Steel
,”
Doctoral dissertation
, McGill University Libraries,
McGill University
, Montreal, QC, Canada.https://www.collectionscanada.gc.ca/obj/s4/f2/dsk1/tape8/PQDD_0017/MQ55019.pdf
14.
Curtin
,
W. A.
,
Olmsted
,
D. L.
, and
Hector
,
L. G.
,
2006
, “
A Predictive Mechanism for Dynamic Strain Ageing in Aluminium–Magnesium Alloys
,”
Nat. Mater.
,
5
(
11
), pp.
875
880
.
15.
Soare
,
M. A.
, and
Curtin
,
W. A.
,
2008
, “
Solute Strengthening of Both Mobile and Forest Dislocations: The Origin of Dynamic Strain Aging in FCC Metals
,”
Acta Mater.
,
56
(
15
), pp.
4046
4061
.
16.
Mcnelley
,
T. R.
, and
Gates
,
S. F.
,
1978
, “
Inverse Strain-Rate Sensitivity and the Portevin-Le Chatelier Effect
,”
Acta Metall.
,
26
(
10
), pp.
1605
1614
.
17.
Mesarovic
,
S. D.
,
1995
, “
Dynamic Strain Aging and Plastic Instabilities
,”
J. Mech. Phys. Solids
,
43
(
5
), pp.
671
700
.
18.
Hähner
,
P.
, and
Rizzi
,
E.
,
2003
, “
On the Kinematics of Portevin–Le Chatelier Bands: Theoretical and Numerical Modelling
,”
Acta Mater.
,
51
(
12
), pp.
3385
3397
.
19.
Benallal
,
A.
,
Berstad
,
T.
,
Børvik
,
T.
,
Clausen
,
A. H.
, and
Hopperstad
,
O. S.
,
2006
, “
Dynamic Strain Aging and Related Instabilities: Experimental, Theoretical and Numerical Aspects
,”
Eur. J. Mech.—ASolids
,
25
(
3
), pp.
397
424
.
20.
ASTM E3-01
,
2001
,
Guide for Preparation of Metallographic Specimens
,
ASTM International
, West Conshohocken, PA.
21.
Rasband
,
W. S.
,
1997
,
ImageJ
,
U.S. National Institutes of Health
,
Bethesda, MD
.
22.
ASTM E9-89a
,
2000
,
Test Methods of Compression Testing of Metallic Materials at Room Temperature
,
ASTM International
, West Conshohocken, PA.
23.
Lindholm
,
U. S.
,
Nagy
,
A.
,
Johnson
,
G. R.
, and
Hoegfeldt
,
J. M.
,
1980
, “
Large Strain, High Strain Rate Testing of Copper
,”
ASME J. Eng. Mater. Technol.
,
102
(
4
), pp.
376
381
.
24.
Gama
,
B. A.
,
Lopatnikov
,
S. L.
, and
Gillespie
,
J. W.
,
2004
, “
Hopkinson Bar Experimental Technique: A Critical Review
,”
ASME Appl. Mech. Rev.
,
57
(
4
), pp.
223
250
.
25.
Staab
,
G. H.
, and
Gilat
,
A.
,
1991
, “
A Direct-Tension Split Hopkinson Bar for High Strain-Rate Testing
,”
Exp. Mech.
,
31
(
3
), pp.
232
235
.
26.
Gilat
,
A.
, and
Cheng
,
C.-S.
,
2000
, “
Torsional Split Hopkinson Bar Tests at Strain Rates Above 104 s−1
,”
Exp. Mech.
,
40
(
1
), pp.
54
59
.
27.
ASTM E562-02
,
2002
,
Test Method for Determining Volume Fraction by Systematic Manual Point Count
,
ASTM International
, West Conshohocken, PA.
28.
ASTM E112-96(R04)
,
2004
,
Test Methods for Determining Average Grain Size
,
ASTM International
, West Conshohocken, PA.
29.
Varma
,
A. H.
, and
Kowalkowski
,
K.
,
1997
,
Effects of Multiple Damage-Heat Straightening Repairs on the Structural Properties of Bridge Steels
,
RC-1456, Michigan State University
,
East Lansing, MI
.
30.
Mayatt
,
A. J.
,
2012
, “
Structure-Property Relationships of an A36 Steel Alloy Under Dynamic Loading Conditions
,”
Masters thesis
, Mississippi State University, Mitchell Memorial Library, Starkville, MS.https://oatd.org/oatd/record?record=oai%5C%3Alibrary.msstate.edu%5C%3Aetd-11022012-131659
31.
Dieter
,
G. E.
,
1988
,
Mechanical Metallurgy
,
McGraw-Hill
,
New York
.
32.
Mohsenzadeh
,
M. S.
, and
Mazinani
,
M.
,
2016
, “
On the Yield Point Phenomenon in Low-Carbon Steels With Ferrite-Cementite Microstructure
,”
Mater. Sci. Eng. A
,
673
, pp.
193
203
.
33.
Callister
,
W. D.
,
2007
,
Materials Science and Engineering: An Introduction
,
Wiley
,
New York
.
34.
Askeland
,
D. R.
,
Fulay
,
P. P.
, and
Wright
,
W. J.
,
2011
,
The Science of Engineering Materials
, 6th ed., Cengage Learning, Stamford, CT.
35.
Smith
,
W. F.
, and
Hashemi
,
J.
,
2010
,
Foundations of Materials Science and Engineering
,
McGraw-Hill Higher Education
,
Boston, MA
.
36.
Wagner
,
D.
,
Moreno
,
J. C.
, and
Prioul
,
C.
,
1998
, “
Dynamic Strain Aging Sensitivity of Heat Affected Zones in C–Mn Steels
,”
J. Nucl. Mater.
,
252
(
3
), pp.
257
265
.
37.
Horstemeyer
,
M. F.
,
Matalanis
,
M. M.
,
Sieber
,
A. M.
, and
Botos
,
M. L.
,
2000
, “
Micromechanical Finite Element Calculations of Temperature and Void Configuration Effects on Void Growth and Coalescence
,”
Int. J. Plast.
,
16
(
7–8
), pp.
979
1015
.
38.
Baskes
,
M.
,
1992
, “
Modified Embedded-Atom Potentials for Cubic Materials and Impurities
,”
Phys. Rev. B
,
46
(
5
), pp.
2727
2742
.
39.
Liyanage
,
L. S. I.
,
Kim
,
S.-G.
,
Houze
,
J.
,
Kim
,
S.
,
Tschopp
,
M. A.
,
Baskes
,
M. I.
, and
Horstemeyer
,
M. F.
,
2014
, “
Structural, Elastic, and Thermal Properties of Cementite (Fe3C) Calculated Using a Modified Embedded Atom Method
,”
Phys. Rev. B
,
89
(
9
), p. 094102.
40.
Horstemeyer
,
M. F.
, and
Gokhale
,
A. M.
,
1999
, “
A Void–Crack Nucleation Model for Ductile Metals
,”
Int. J. Solids Struct.
,
36
(
33
), pp.
5029
5055
.
You do not currently have access to this content.