This paper compared the mechanical behavior of 6H SiC under quasi-static and dynamic compression. Rectangle specimens with a dimension of 3 × 3 × 6 mm3 were used for quasi-static compression tests under three different loading rates (i.e., 10−5/s, 10−4/s, and 10−3/s). Stress–strain response showed purely brittle behavior of the material which was further confirmed by scanning electron microscopy (SEM)/transmission electron microscopy (TEM) examinations of fractured fragments. For dynamic compression, split Hopkinson pressure bar (SHPB) tests were carried out for cubic specimens with a dimension of 6 × 6 × 4 mm3. Stress–strain curves confirmed the occurrence of plastic deformation under dynamic compression, and dislocations were identified from TEM studies of fractured pieces. Furthermore, JH2 model was used to simulate SHPB tests, with parameters calibrated against the experimental results. The model was subsequently used to predict strength and plasticity-related damage under various dynamic loading conditions. This study concluded that, under high loading rate, silicon carbide (SiC) can deform plastically as evidenced by the development of nonlinear stress–strain response and also the evolution of dislocations. These findings can be explored to control the brittle behavior of SiC and benefit end users in relevant industries.

References

References
1.
Reddy
,
J. D.
,
Volinsky
,
A. A.
,
Frewin
,
C. L.
,
Locke
,
C.
, and
Saddow
,
S. E.
,
2007
, “
Mechanical Properties of 3C-SiC Films for MEMS Applications
,”
MRS Proc.
,
1049
, p. AA03-06.
2.
Sarro
,
P. M.
,
2000
, “
Silicon Carbide as a New MEMS Technology
,”
Sens. Actuators A: Phys.
,
82
(
1–3
), pp.
210
218
.
3.
Frischmuth
,
T.
,
Schneider
,
M.
,
Maurer
,
D.
,
Grille
,
T.
, and
Schmid
,
U.
,
2016
, “
Inductively-Coupled Plasma-Enhanced Chemical Vapour Deposition of Hydrogenated Amorphous Silicon Carbide Thin Films for MEMS
,”
Sens. Actuators A: Phys.
,
247
, pp.
647
655
.
4.
Tamura
,
T.
,
Nakamura
,
T.
,
Takahashi
,
K.
,
Araki
,
T.
, and
Natsumura
,
T.
,
2005
, “
Research of CMC Application to Turbine Components
,”
IHI Eng. Rev.
,
38
(2), pp.
58
62
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.6017&rep=rep1&type=pdf
5.
Bian
,
G.
, and
Wu
,
H.
,
2015
, “
Friction and Surface Fracture of a Silicon Carbide Ceramic Brake Disc Tested against a Steel Pad
,”
J. Eur. Ceram. Soc.
,
35
(
14
), pp.
3797
3807
.
6.
Venkatesan
,
J.
,
Iqbal
,
M. A.
, and
Madhu
,
V.
,
2017
, “
Ballistic Performance of Bilayer Alumina Aluminium and Silicon Carbide Aluminium Armours
,”
Procedia Eng.
,
173
, pp.
671
678
.
7.
Crouch
,
I. G.
,
Kesharaju
,
M.
, and
Nagarajah
,
R.
,
2015
, “
Characterisation, Significance and Detection of Manufacturing Defects in Reaction Sintered Silicon Carbide Armour Materials
,”
Ceram. Int.
,
41
(
9
), pp.
11581
11591
.
8.
Tomono
,
K.
,
Furuya
,
H.
,
Miyamoto
,
S.
,
Okamura
,
Y.
,
Sumimoto
,
M.
,
Sakata
,
Y.
,
Komatsu
,
R.
, and
Nakayama
,
M.
,
2013
, “
Investigations on Hydrobromination of Silicon in the Presence of Silicon Carbide Abrasives as a Purification Route of Kerf Loss Waste
,”
Sep. Purif. Technol.
,
103
, pp.
109
113
.
9.
Lankford
,
J.
,
1981
, “
Mechanisms Responsible for Strain-Rate-Dependent Compressive Strength in Ceramic Materials
,”
J. Am. Ceram. Soc.
,
64
(
2
), pp.
C-33
C-34
.
10.
Nemat-Nasser
,
S.
, and
Deng
,
H.
,
1994
, “
Strain-Rate Effect on Brittle Failure in Compression
,”
Acta Metall. Et Mater.
,
42
(
3
), pp.
1013
1024
.
11.
Sarva
,
S.
, and
Nemat-nasser
,
S.
,
2001
, “
Dynamic Compressive Strength of Silicon Carbide Under Uniaxial Compression
,”
Mater. Sci. Eng.:A
,
317
(
1–2
), pp.
140
144
.
12.
Garkushin
,
G. V.
,
Razorenov
,
S. V.
,
Rumyantsev
,
V. I.
, and
Savinykh
,
A. S.
,
2014
, “
Dynamic Strength of Reaction-Sintered Silicon Carbide Ceramics
,”
Mech. Solids
,
49
(
6
), pp.
616
622
.
13.
Holland
,
C. C.
, and
McMeeking
,
R. M.
,
2015
, “
The Influence of Mechanical and Microstructural Properties on the Rate-Dependent Fracture Strength of Ceramics in Uniaxial Compression
,”
Int. J. Impact Eng.
,
81
, pp.
34
49
.
14.
Pittari
,
J.
,
Subhash
,
G.
,
Zheng
,
J.
,
Halls
,
V.
, and
Jannotti
,
P.
,
2015
, “
The Rate-Dependent Fracture Toughness of Silicon Carbide- and Boron Carbide-Based Ceramics
,”
J. Eur. Ceram. Soc.
,
35
(
16
), pp.
4411
4422
.
15.
Castaing
,
J.
,
Cadoz
,
J.
, and
Kirby
,
S. H.
,
1981
, “
Prismatic Slip of Al2O3 Single Crystals below 1000 °C in Compression Under Hydrostatic Pressure
,”
J. Am. Ceram. Soc.
,
64
(
9
), pp.
504
511
.
16.
Lankford
,
J.
,
1981
, “
Temperature-Strain Rate Dependance of Compressive Strength and Damage Mechanisms in Aluminium Oxide
,”
J. Mater. Sci.
,
16
(
6
), pp.
1567
1578
.
17.
Louro
,
L. H. L.
, and
Meyers
,
M. A.
,
1989
, “
Effect of Stress State and Microstructural Parameters on Impact Damage of Alumina-Based Ceramics
,”
J. Mater. Sci.
,
24
(
7
), pp.
2516
2532
.
18.
Chen
,
W.
, and
Ravichandran
,
G.
,
1996
, “
Static and Dynamic Compressive Behavior of Aluminum Nitride Under Moderate Confinement
,”
J. Am. Ceram. Soc.
,
79
(
3
), pp.
579
584
.
19.
Wananuruksawong
,
R.
,
Shinoda
,
Y.
,
Akatsu
,
T.
, and
Wakai
,
F.
,
2015
, “
High-Strain-Rate Superplasticity in Nanocrystalline Silicon Nitride Ceramics Under Compression
,”
Scr. Mater.
,
103
, pp.
22
25
.
20.
ASTM International
,
2015
, “
Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM C1424-15
.https://www.astm.org/Standards/C1424.htm
21.
Kolsky
,
H.
,
1949
, “
An Investigation of Mechanical Properties of Material at Very High Rates of Loading
,”
Proc. Phys. Soc., Sect. B
,
62
(
11
), pp. 676–700.
22.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2001
, “
A Split Hopkinson Pressure Bar Technique to Determine Compressive Stress-Strain Data for Rock Materials
,”
Exp. Mech.
,
41
(
1
), pp.
40
46
.
23.
Cronin
,
D. S.
,
Bui
,
K.
,
Kaufmann
,
C.
,
Mcintosh
,
G.
,
Berstad
,
T.
, and
Cronin
,
D.
, 2003, “
Implementation and Validation of the Johnson-Holmquist Ceramic M Aterial Model in LS-DYNA
,” Fourth European LS-DYNA Users Conference, Ulm, Germany, May 23–24, pp.
47
60
.
24.
Johnson
,
G. R.
, and
Holmquist
,
T. J.
,
1992
, “
‘A Computational Constitutive Model for Brittle Materials Subjected to Large Strains, High Strain Rates and High Pressures’
,”
Shock-Wave and High-Strain-Rate Phenomena in Materials
,
M. A.
Meyers
,
L. E.
Muir
, and
K. P.
Staudhammer
, eds.,
Marcel Dekker
,
New York
, pp.
1075
1081
.
25.
Johnson
,
G. R.
, and
Holmquist
,
T. J.
,
1994
, “
An Improved Computational Constitutive Model for Brittle Materials
,”
Am. Inst. Phys.
,
309
(
1
), pp.
981
984
.
26.
Hayun
,
S.
,
Paris
,
V.
,
Mitrani
,
R.
,
Kalabukhov
,
S.
,
Dariel
,
M. P.
,
Zaretsky
,
E.
, and
Frage
,
N.
,
2012
, “
Microstructure and Mechanical Properties of Silicon Carbide Processed by Spark Plasma Sintering (SPS)
,”
Ceram. Int.
,
38
(
8
), pp.
6335
6340
.
27.
Forquin
,
P.
,
Denoual
,
C.
,
Cottenot
,
C. E.
, and
Hild
,
F.
,
2003
, “
Experiments and Modelling of the Compressive Behaviour of Two SiC Ceramics
,”
Mech. Mater.
,
35
(
10
), pp.
987
1002
.
28.
Shin
,
C. J.
,
Meyers
,
M. A.
,
Nesterenko
,
V. F.
, and
Chen
,
S. J.
,
2000
, “
Damage Evolution in Dynamic Deformation of Silicon Carbide
,”
Acta Mater.
,
48
(
9
), pp.
2399
2420
.
29.
Hu
,
G.
,
Chen
,
C. Q.
,
Ramesh
,
K. T.
, and
McCauley
,
J. W.
,
2012
, “
Mechanisms of Dynamic Deformation and Dynamic Failure in Aluminium Nitride
,”
Acta Mater.
,
60
(
8
), pp.
3480
3490
.
30.
Wang
,
Z.
, and
Li
,
P.
,
2015
, “
Dynamic Failure and Fracture Mechanism in Alumina Ceramics: Experimental Observations and Finite Element Modelling
,”
Ceram. Int.
,
41
(
10
), pp.
12763
12772
.
31.
Zhou
,
Y. C.
,
He
,
L. F.
,
Lin
,
Z. J.
, and
Wang
,
J. Y.
,
2013
, “
Synthesis and Structure–Property Relationships of a New Family of Layered Carbides in Zr-Al(Si)-C and Hf-Al(Si)-C Systems
,”
J. Eur. Ceram. Soc.
,
33
(
15–16
), pp.
2831
2865
.
32.
Stevens
,
R.
,
1972
, “
Defects in Silicon Carbide
,”
J. Mater. Sci.
,
7
(
5
), pp.
517
521
.
33.
Maeda
,
K.
,
Suzuki
,
K.
,
Fujita
,
S.
,
Ichihara
,
M.
, and
Hyodo
,
S.
,
1988
, “
Defects in Plastically Deformed 6H-SiC Single Crystal Studied by Transmission Electron Microscopy
,”
Philos. Mag. A: Phys. Condens. Matter, Struct., Defects Mech. Prop.
,
57
(
4
), pp.
573
592
.
34.
Weertman
,
J.
, and
Weertman
,
J. R.
,
1992
,
‘Elementary Dislocation Theory
,
Oxford University Press
,
New York
, p.
98
.
35.
Holmquist
,
T. J.
, and
Johnson
,
G. R.
,
2002
, “
Response of Silicon Carbide to High Velocity Impact Response of Silicon Carbide to High Velocity Impact
,”
J. Appl. Phys.
,
91
(
9
), pp.
5858
5866
.
You do not currently have access to this content.